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Abstract

We study government optimal subsidy policies for research programs in the face of servere infor-
mation asymmetry� when �rms have private information about the likelihood of project viability but
the government cannot form a unique prior belief about this likelihood. The paper makes two con-
tributions. First, we show that the way in which R&D is subsidized matters. Under both monopoly
R&D (i.e., a single �rm conducts R&D in isolation) and R&D competition, di¤erent types of subsi-
dies (e.g., earmarked, unrestricted subsidies, and pure matching subsidies) have signi�cantly di¤erent
e¤ects on �rms�R&D investment incentives. Second, we show that a simple subsidy scheme works
even when the government is unable to form a unique prior belief about the �rm�s private information
on project viability. If the shadow cost of public funds is zero, under monopoly R&D, there exists
a pure matching subsidy that induces the �rm to follow the �rst-best R&D policy irrespective of its
prior beliefs about the viability of the project, meaning it is a (belief-free) ex post equilibrium policy;
under R&D competition, the �rst-best outcome can also be achieved through a simple combination of
a matching subsidy and an unrestricted subsidy. If the shadow cost of public funds is positive, an ex
post equilibrium in general does not exist either under monopoly or competition. We then consider
two alternative policy decision criteria that are appropriate for belief-free games: rationalizability
and max-min criteria. We argue that the max-min criteria is preferable in our context, and by way
of doing so establish that the set of max-min subsidy policies under either monopoly or competitive
R&D consists entirely of simple pure matching subsidies. We further establish that allowing �rms to
form an R&D consortium reduces the matching rate for the highest max-min subsidy, suggesting that
cooperative R&D has the potential to economize on the shadow costs of public funding of subsidies.
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1 Introduction

Governments have long played a role in subsidizing private investments in R&D. The principal economic

justi�cation for R&D subsidies is the presence of market imperfections (e.g., limits on appropriability

or problems of free riding) that result in socially suboptimal provision of private R&D (Arrow, 1962).

But the economic literature is not clear how successful subsidies have been, or can be, in addressing

these market failures. The empirical literature on R&D subsidies presents decidedly mixed results, with

some studies concluding that R&D subsidies stimulate private R&D investment (e.g., Lach, 2002 and

Almus and Czarnitzki, 2003), while others �nding that subsidies crowd out private R&D investment

(e.g., Irwin and Klenow, 1996 and Wallsten, 2000) or leave it unchanged (e.g., Klette and Moen, 1998,

1999). The theoretical literature (discussed in more detail below) shows that subsidies can, in principle,

stimulate private R&D investment and increase social welfare, but the models in the literature are

typically cast within static and/or deterministic settings that seem far removed from the dynamic and

uncertain environments in which much modern research (especially basic research) takes place. It is

fair to say that from both a theoretical and empirical perspective, the e¤ectiveness of government R&D

subsidies is an unsettled question, and as Hall (2005) suggests, it deserves further research.

The purpose of this paper is to advance the theory of R&D subsidies by studying their impact in a

setting with two key features: (1) �rms receiving subsidies for a research program are uncertain both

about the timing of the scienti�c breakthrough that the program can lead to (�when uncertainty�) and

about the underlying viability of the program itself (�if uncertainty�); (2) �rms�prior beliefs about

program viability are private information, and the government providing the subsidies is unable to

form a unique prior belief about the �rms�priors. That is, the subsidizing government faces a severe

informational asymmetry� it neither knows how optimistic �rms are about the viability of the research

program, nor does it know what to believe about �rms� optimism. These features seem especially

likely to hold for research programs taking place in �uncharted waters,� so our theory is particularly

relevant for groundbreaking research programs in areas in which there is little established consensus

about whether the current direction of inquiry is likely to be fruitful.

Our paper makes two broad contributions. First, we show that the way in which R&D is subsidized

matters. Certain types of subsidies (i.e., earmarked funding in which a �rm is required to spend a certain

minimum amount on the project) may crowd out private investment, while other types of subsidies (i.e.,
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a pure matching subsidy in which a �rm undertaking R&D is reimbursed a fraction of its R&D expenses)

may stimulate private investment. This suggests that empirical studies of the impact of subsidies on

private R&D investment need to be cognizant of how subsidies are structured. Second, we show that

simple R&D subsidy scheme works. Despite the government�s severe informational constraints, simple

subsidy mechanisms� in particular a pure matching subsidy, in which the government reimburses a

fraction of the �rms�R&D expenditures� can still perform reasonably well with respect to plausible

decision criteria, and under interesting circumstances it can even attain the �rst-best level of welfare.

More speci�cally, our paper uses a two-armed bandit model of R&D competition in which �rms seek

to achieve a signi�cant scienti�c breakthrough.1 As time passes and the breakthrough is not achieved,

�rms become more and more pessimistic about the likelihood that this path of inquiry will ever pay o¤,

and if they become su¢ ciently pessimistic, they will eventually terminate the project. Conditional on

the project being viable, the likelihood and timing of a breakthrough depends on how persistent the �rms

are, i.e., how willing they are to continue to fund the project over time. To incentivize �rms�private

R&D investment, the government implements a subsidy mechanism in which a �rm�s R&D subsidy

is a function of its actual R&D e¤ort. The mechanism subsumes the three speci�c funding schemes

commonly used in practice: a pure matching subsidy, an earmarked subsidy, and an unrestricted subsidy

in which the government makes an open-ended commitment to fund the project until a breakthrough

occurs (though unlike an earmarked subsidy there is no formal requirement that the �rm actually spend

the money on the focal R&D project). In other words, the government�s subsidy scheme has three

components� a combination of matching, earmarked and unrestricted subsidies.

We �rst study the impact of this subsidy mechanism under both monopoly R&D and R&D compe-

tition. The focus here is to identify the incentive e¤ects of subsidizing R&D when there is both �if�and

�when�uncertainty. Under a monopoly R&D, the �rm�s optimal R&D investment decision is a �bang-

bang�rule: depending on its posterior beliefs about the project�s viability, it either invests ��at out�in

R&D at each instant in time or not at all. Compared with the case of no subsidies, the matching compo-

nent of the subsidy expands the range of posterior beliefs over which the monopolist invests ��at out,�

while the earmarked and unrestricted components of the subsidy shrink that range. Thus, increases in

1Using two-armed bandit model to analyze economic problems dates back to Rothschild (1974). Recently, a number of
papers focus on the strategic interaction among agents in a bandit framework (e.g., Keller, Rady, and Cripps, 2005, and
Klein and Rady 2008). Our paper is closest to Keller, Rady, and Cripps (2005), as our second stage R&D competition is
based on their Poisson bandit framework. Besanko and Wu (2013) explore R&D competition and cooperation in a model
inspired by Keller, Rady, and Cripps (2005).
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the matching rate stimulate private spending on R&D, while increases in unrestricted funding or the

minimum mandated R&D e¤ort crowd out private spending. But a subsidy with minimum mandated

R&D e¤ort could also increase R&D investment. Under an earmarked subsidy with minimum mandate,

R&D e¤ort on the project continues below the point at which the �rm stops investing without subsidy,

and thus lead to more overall investment in R&D. Under R&D competition, an additional complication

arises that does not exist under monopoly: the possibility that �rms may free ride on the R&D e¤orts

of other �rms. As we show below, the free-rider problem implies that in a symmetric equilibrium,

investment by �rms is no longer �bang-bang.�Instead, it may involve a range of posterior beliefs over

which each �rm invests a positive amount in R&D which is less than the technological maximum. When

the free-rider problem can arise, an unrestricted component to the subsidy and a minimum mandated

level of R&D� which had unambiguously adverse incentive e¤ects under monopoly� can eliminate the

free-rider problem. Indeed, without the unrestricted component or a minimum mandate, the free-rider

problem always arises.

We then turn to optimal subsidy policy in a setting in which �rms have private information about

the prior likelihood that the project is viable, and the government lacks probabilistic knowledge of

this likelihood; in other words, the government has no (unambiguous) prior over the �rm�s prior. This

severely constrained informational environment prevents the government from using either a forcing

mechanism to achieve �rst-best welfare or a conventional mechanism design approach in which it o¤ers

the �rms a menu of policies that maximizes expected social welfare for a given prior probabilistic belief

over the �rms�private information. Under monopoly R&D, we show that when a subsidy is a pure

transfer between taxpayers and �rms, meaning no shadow cost of public funding, there exists a pure

matching subsidy that induces the �rm to follow the �rst-best R&D policy irrespective of its prior

beliefs about the viability of the project. This particular matching subsidy is thus a (belief-free) ex

post equilibrium. To implement it, the government only needs to estimate the total social bene�t and

the percentage of which that can be appropriated by the �rm. By contrast, when there is a positive

shadow cost of public funds, we prove that an ex post equilibrium does not, in general, exist. We then

consider two alternative policy making criteria that are appropriate for belief-free games2 of the sort we

consider here: rationalizability (Pearce, 1984) and the max-min criteria (Gilboa and Schmeidler, 1989).

Through its implication, rationalizability prevents the policy maker from choosing strictly dominated

2See Bergemann and Morris (2007) for a general treatment of belief-free incomplete information games.
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policies, while max-min policies protect the policy maker against inferior �worst case scenario�policy

outcome relative to any alternative policies. Both criteria strike us as plausible inasmuch as policy

makers operating under signi�cant informational constraints may very well be keen to avoid big policy

�mistakes.�We show that policies satisfying the max-min criteria are rationalizable, but the converse is

not true. We further show that the set of (pure strategy) max-min policies are pure matching subsidies,

and the policy in this set with the highest matching rate has the appealing property of eliminating

the possibilities of both underinvestment and overinvestment in R&D. Further, as the shadow cost of

public funds goes to 0, this matching rate approaches the matching rate that implements the �rst-best

solution. For these reasons, we suggest that the max-min criterion is preferable to rationalizability in

our context.

The �rst-best outcome can also be achieved under R&D competition when there is zero shadow

cost of public funds. However, unlike monopoly, that policy is not a pure matching policy. Instead, it

involves a combination of a matching subsidy and an unrestricted subsidy. The unrestricted component

of the subsidy eliminates the free-rider problem, and given this, the matching rate is then set to mimic

the social planner�s optimal investment policy. Like the monopoly case, when the shadow cost of public

funds is positive, an ex post equilibrium does not exist. Policies that satisfy the max-min criterion are

again pure matching subsidies. But unlike the monopoly case, the policy in the max-min set with the

highest matching rate cannot overcome suboptimal intensity of investment due to the free-rider problem.

However, if the government permits �rms to choose R&D cooperatively through a research consortium,

we show that there exists a matching rate that satis�es the max-min criterion and eliminates both over-

and underinvestment.

Our paper �ts within the theoretical literature on R&D subsidy policy. Papers in this literature

have focused on a number of broad issues. Some, such as Spencer and Brander (1983) and Qiu and Tao

(1998), study the use of R&D subsidies to enhance national competitiveness. Other papers consider

the role of subsidies to help overcome informational problems. For example, Socorro (2007) explores

optimal patent subsidies for R&D in the context of a mechanism design problem in which �rms have

private information about the value of an uncertain R&D project, while Takalo and Tanayama (2010)

examine whether R&D subsidies can alleviate �nancing constraints due to adverse selection. Most

closely related to this paper are papers by Hinloopen (1997, 2000), Stenbacka and Tomback (1998), and

Romano (1989) that explore the impact of subsidies on the level of R&D and social welfare. Hinloopen
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(1997) analyzes a model similar to the framework of d�Aspremont and Jacquemin (1988) and Kamien

et. al. (1992) in which �rms�investments in cost-reducing e¤ort deterministically reduces their costs,

and possibly the costs of other �rms as well due to spillovers. R&D subsidies are shown to increase the

level of investment activity and social welfare and are more e¤ective at increasing R&D investment than

allowing �rms to cooperate through research joint ventures or R&D cartels. Stenbacka and Tomback

(1998) analyze the best way to organize R&D (e.g., competitive research joint venture, cartelized research

joint venture, R&D competition) given that the government chooses an optimal subsidy rate for the

mode of organization being considered. With optimal subsidies, research joint ventures are shown to

be superior to competition provided that the social cost of subsidies is not too large. Romano (1989)

analyzes subsidies for research projects aimed at achieving process innovations in the presence of �when�

uncertainty. He shows that it is always socially optimal to subsidize a monopolist, but under certain

circumstances (e.g., su¢ ciently long patent life) it is not optimal to subsidize competitive �rms.

Our paper di¤ers from the existing theoretical literature in several important respects. First, unlike

the existing literature that analyze R&D subsidies in reduced-form static or two-stage models, our

model is explicitly dynamic. By employing the two-armed bandit framework, we can analyze how

alternative subsidy policies a¤ect belief updating and the abandonment of R&D projects, issues that

cannot be studied in static or two-stage models. Second, we consider more general subsidy policies

than those considered in the existing literature. Hinloopen (1997, 2000) and Stenbacka and Tomback

(1998) consider pure matching subsidies, while Romano considers unrestricted subsidies. Our paper, by

contrast, analyzes a more general subsidy mechanism that embraces both matching and unrestricted

subsidies as special cases. Third, in contrast to many of the papers cited above, a key focus of our paper

is on the properties of an optimal subsidy policy and how that policy is a¤ected by underlying economic

fundamentals. Finally, we consider an environment in which the policy maker lacks prior beliefs over

�rms�private information about project viability. Accordingly, optimal subsidy policy in our model

cannot depend on the details of potentially ad hoc subjective beliefs and must instead be robust to the

entire range of possible assessments that the �rms might have about project viability.

Our paper is also related to several papers in the broader literature on the �nancing of innovative ac-

tivity, in particular Bergemann and Hege (1998, 2005) and Hörner and Samuelson (2013). These papers,

like ours, study R&D projects that are characterized by both �if�and �when�uncertainty. The main

focus of these papers is to explore the hidden action (and its induced hidden information) problems in a
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context of open-ended exclusively external �nancing. Although it is critical to understand the problem

caused by hidden action in R&D experimentation, it is equally important to understand the economics

of R&D subsidies in the case of severe information asymmetries. By shifting the emphasis from hidden

action to the hidden information problem in the context of a belief-free incomplete information game,

our paper complements the current literature on funding experimentation by including a number of

new important features. First, unlike exclusively external funding, we allow �rms to use their own

funding to pursue R&D while receiving �nancial support from the government. Second, we address the

appropriability and free-riding problems simultaneously with a funding scheme that includes matching,

earmarked, and unrestricted subsidies as special cases, while the current literature largely restricts the

external �nancial support to unrestricted funding only. Third, we study the funding policy for multiple

�rms while the Bergemann and Hege and Hörner and Samuelson papers focus on the one-�rm case.

Finally, their models assume no friction in external funding, while we consider cases with and without

frictions in terms of a shadow cost.

The paper is divided into �ve sections, including this one. Section 2 describes the model. Section

3 illustrates how changes in (given and possibly non-optimal) subsidy policies a¤ects the �rm�s R&D

incentives, �rst for the case of monopoly R&D and then for the case of R&D competition. Section 4 then

takes up the question of how the government, lacking both deterministic and probabilistic knowledge of

�rms�priors about the viability of the project, would determine an optimal R&D subsidy policy. Again,

we start with the case of monopoly R&D and then turn to R&D competition. Section 5 summarizes

and concludes. Proofs of all propositions are in the Appendix.

2 The Model

We present a model of R&D investment based on the exponential bandit framework of Keller, Rady,

and Cripps (2005). We state the model with N �rms, with the analysis of monopoly corresponding to

the special case of N = 1.

Each of the N identical �rms faces an opportunity to invest in an R&D program aimed at achieving

a signi�cant breakthrough. Ex ante the �rms do not know if a breakthrough is possible. Let p0

denote the �rms�common prior that the project is viable, i.e., that the breakthrough can be achieved

eventually. Conditional on the project being viable, the time the breakthrough occurs is random.
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Higher R&D investment increases the likelihood that the breakthrough occurs sooner. Speci�cally, let

kit, i = 1; : : : N , denote �rm i�s R&D investment at time t. Conditional on the project being viable, the

hazard rate of �rm i�s success on the R&D project is �kitdt, where � > 0 is a parameter. We assume

that each �rm faces a technological constraint that limits its investment in R&D to at most 1 unit of

e¤ort at any point in time t; meaning kit 2 [0; 1]. One can interpret this constraint as an extreme form

of diminishing marginal returns to R&D. If the project was indeed viable, and a single �rm exerted the

maximum feasible level of R&D e¤ort (k = 1), then 1
� would be the expected time until a breakthrough

occurs. R&D e¤ort is costly, and the total cost C(kit) of R&D e¤ort is assumed to be an identical linear

function for each �rm, C
�
kit
�
= �kit, where � > 0 denotes the marginal cost of R&D e¤ort.

3

The achievement of a breakthrough is assumed to be �big news�and visible to all �rms competing

in the R&D race. As time passes and a breakthrough has not occurred, �rms become more pessimistic

about the viability of the project. Let p (t) denote �rms�posterior belief about the project�s viability

at date t. If no breakthrough occurs, p(t) adjusts downward according to Bayes rule:

p (t+ dt) =
p (t)

�
1� �

PN
i=1 k

i
tdt
�

1� p (t) + p (t)
�
1� �

PN
i=1 k

i
tdt
� : (1)

It follows that
dp

dt
= lim
dt!0

p (t+ dt)� p (t)
dt

= ��
NX
i=1

kitp (t) (1� p (t)) : (2)

This rate of belief updating is independent of its starting state, so we may rewrite it as

dp = ��
NX
i=1

kitp (1� p) dt: (3)

The solution concept is Markov Perfect Equilibrium4, with each �rm�s common posterior belief p being

the payo¤-relevant state variable and equation (3) representing the law of motion for the state variable.

Investment behavior and �rm value functions are thus conditioned on p. It is straightforward to establish

that for the important case of constant ��at out�investment, i.e., ki� = 1 for � 2 [0; t] and all i = 1; : : : N ,
3The linearity of the cost function is needed to solve for the equilibrium investment level in closed form. The basic

intuition underlying the results does not depend on the linearity of the cost function.
4Our use of the term Markov Perfect Equilibrium does not restrict it to be a re�nement of subgame perfect Nash

equilibrium. This relaxation allows us to apply it to our particular dynamic game with incomplete information. Since the
government is the �rst mover who moves only once, to satisfy the requirement of Markov perfection, we only need each
�rm�s strategy to be Markovian, and solve the appropriate dynamic programming problem.
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the posterior belief about project viability if no breakthrough has occurred by date t is given by p (t) =

p0
p0+(1�p0)e�t .

5 When the prior belief is close to 1, the posterior belief evolves very slowly for a long

period of time if no breakthrough occurs, and in the extreme case of p0 = 1, there is no �if�uncertainty,

and beliefs remain at p0 = 1 even as time passes without a breakthrough.6

We assume the �rm that wins the R&D race earns a payo¤ � > 0. This payo¤ is the present

value of the winning �rm�s pro�ts, which are assumed to be discounted at a rate r. Each of the N � 1

non-winning �rms is assumed to receive a payo¤ ��, where � 2 [0; 1]. If � = 0, the R&D race is

winner-take-all; if � > 0, the breakthrough has positive spillovers. The discounted present value of

the social bene�t from the new technology is given by CS + � + (N � 1)��, where CS is the bene�t

of the breakthrough for consumers that the discovering and non-discovering �rms cannot capture.7

For later use, let � , �+(N�1)��
CS+�+(N�1)�� 2 (0; 1] be the appropriability ratio, i.e., the share of the total

bene�t captured by �rms and thus 1 � � is the share of the total bene�t that accrues to consumers.

Therefore, government intervention in the market for R&D has two potential justi�cations: the presence

of R&D spillovers across �rms (when � > 0) and the imperfect appropriability of the bene�t from the

breakthrough (when � < 1). Throughout the analysis, we assume that �[CS+�+(N�1)��]
� > 1, which

implies that the social bene�t-cost ratio of a viable R&D project exceeds 1.8

The government�s R&D subsidy policy is represented by an array of three instruments, a = (z; s; �),

that form a schedule S(kitja) that determines the funding �ow a �rm receives at each instant in time

prior to a breakthrough:

S(kitja) =

8><>: s+ ��(kit � z) if kit � z;

0 otherwise
(4)

In this schedule:

� z 2 [0; 1] is the minimum R&D e¤ort mandated by the government at each instant in time in

5As we will see, constant investment, at least for a while, occurs along the equilibrium path for both N = 1 and N > 1.
6Suppose for example, if p0 = 0:9999 and � = 0:1. If �rms are investing ��at out,�then by t = 50, the posterior is still

greater than 0:98.
7Throughout the analysis, we assume that �, CS; and � do not depend on N . In other words, we assume that the

structural conditions that determine post-breakthrough pro�t, consumer surplus, and spillovers are independent of the
number of �rms engaged in competition to achieve the breakthrough itself.

8Let eT be the random time to discovery for a project that is certain to be viable. With hazard rate � and �at-out
investments (by all N �rms) at any point in time, eT is an exponential random variable with parameter N�. The ex ante

expected social bene�t of a viable R&D project would be [CS +�+ (N � 1)��]E(e�r eT ), which equals N�[CS+�+(N�1)��]
r+N�

.

The ex ante expected cost of a viable R&D project would be
R1
0
N�

�R t
0
e�r�d�

�
�e�N�tdt which can be shown to equal

N�
r+N�

. The ex ante bene�t cost ratio is thus �[CS+�+(N�1)��]
�

:
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order for the �rm to be eligible for any funding, and thus �z is the minimum mandated spending

on R&D.

� s 2 [�z; �s] is the baseline amount of funding the �rm receives, provided it satis�es the mandate,

where �s is a �nite limit of s assumed to be such that s
r < �.9 We require that s � �z so that

at any point in time the �rm would prefer to adhere to the mandate and accept the associated

funding, rather than reject it. If s = �z, the government exactly reimburses the �rm its mandated

R&D spending, while if s > �z, the �rm receives a subsidy in excess of its minimum mandated

R&D expenditure. In this latter case, the �rm could (in principle) spend some of its government

funds on other activities besides the focal R&D project (e.g., it could fund other R&D projects).

We thus refer to s� �z as the unrestricted component of its R&D subsidy.

� � 2 [0; 1] is the matching rate: the additional funding the �rm receives for every additional dollar

of R&D spending undertaken above the mandated level.

Throughout we let A , fajz 2 [0; 1] ; s 2 [�z; �s] ; � 2 [0; 1]g denote the set of feasible subsidy policies.

The set of policies in A embrace three interesting special cases:

� If z = 0, s = 0, and � 2 (0; 1], then a �rm receives a pure matching subsidy : for every �k dollars

of R&D investment, the government �matches�the �rm�s R&D spending by providing a subsidy

of ��k.

� If z > 0, s = �z, and � = 0, then a �rm receives an earmarked subsidy : it receives a subsidy of

�z dollars, provided that its R&D e¤ort satis�es the mandate z.

� If z = 0, s > 0, and � = 0, then a �rm receives a pure unrestricted subsidy : it receives a

no-strings-attached grant of s.

We assume throughout that the experience and scienti�c facts that underpin p0 are unknown to the

government and are thus private information to the �rms. Therefore, p0 can be interpreted as the �rms�

unobservable type. Lacking knowledge of p0, the government cannot infer the �rms�posterior belief p(t)

and, therefore, cannot write a �forcing contract�in which it ties the parameters of the subsidy function

9This implies that an unrestricted subsidy can never be so large that a �rm would (weakly) prefer collecting the subsidy
to receiving the prize with certainty.
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to the posterior in such a way that it replicates the �rst-best investment policy.10 We further assume,

in contrast to the conventional Bayesian approach in which the government would have a given prior

belief about p0, that the government has no such prior. In other words, the government not only lacks

complete information about p0, but it also lacks probabilistic information about it. Without a prior over

p0, the government cannot determine an optimal menu of policies that maximizes its expected welfare,

as in a conventional mechanism design approach. An advantage, in our view, of this assumption is that

it forces consideration of robust policies that would not need to be �ne-tuned in the wake of changes in

potentially arbitrary prior beliefs.

Note that we focus exclusively on ex ante subsidies that are paid during the research phase of

the project. We do not consider ex post subsidies that are contingent on the success of the project

(sometimes called patent subsidies; see Socorro, 2007).11 Further, we restrict attention to subsidy

policies that are both time invariant (i.e., (z; s; �) are independent of t) and common to all �rms in

the industry. Focusing on such policies is not only useful for building intuition about the impact of

alternative subsidy instruments on �rms�incentives, but as we show below, restricting attention to such

policies may entail no loss of generality since, under important circumstances, they are powerful enough

to attain the �rst-best outcome.12

3 The Incentive E¤ects of R&D Subsidies

Why does the way in which R&D is subsidized matter? We answer this question by examining the

incentive e¤ects of various R&D subsidy schemes, starting with the case of a single �rm in isolation

(monopoly R&D) followed by the case of multiple �rms in an R&D competition. In particular, we

derive the optimal R&D strategies given a subsidy policy and show how variations of subsidy policy

a¤ect �rms�incentives in R&D investment.
10The �rst-best investment policy for N = 1 is stated in the next section and in the section after that for N > 1.
11We focus on ex ante subsidies because they are the most common way that governments support private R&D activity.

In our model, patent subsidies would enable the government to achieve the �rst-best solution under monoply when the
shadow cost of public funds is zero. Even in this case, though, they would require that the government pass along the
entire consumer surplus to the winning �rm. This may be possible if the government itself is the only consumer of the
products created by the research, as in the case of defense-related R&D. But this could be di¢ cult in the context of other
crucial technologies such as stem cell research.
12A particular example of a time-varying subsidy policy would be one in which funding is cut o¤ after a certain deadline.

Bonatti and Hörner (2011) analyze the role of deadlines in collaborative research, and they show how deadlines can
overcome the moral hazard in teams. In the concluding section, we discuss the role that deadlines might play in our model
and how our model relates to the insights developed by Bonatti and Hörner.
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3.1 Monopoly R&D (N = 1)

Faced with a subsidy policy a; the single �rm in the case of monopoly R&D has a Bellman equation as

follows:

V (p) = max
k2[z;1]

h
(s� ��z � � (1� �) k)dt+ �kpdt�+ (1� �kpdt) e�rdtV (p+ dp)

i
: (5)

With probability �kpdt; a breakthrough will take place within the interval [t; t+dt), which gives the �rm

the prize � from discovering the new technology. With probability 1� �kpdt, no breakthrough occurs

within the interval [t; t+ dt); and the �rm�s value become e�rdtV (p+ dp) : Using standard arguments,

the �rm�s value function can be shown to be implicitly de�ned by the following di¤erential equation:13

(1 + r)V (p) = s� �z + max
k2[z;1]

8><>: [�kp�+ (1� �kp)V (p)]

�� (1� �) (k � z)� �kp (1� p)V 0 (p)

9>=>; : (6)

The �rm�s value consists of four components:

1. s� �z is the �ow bene�t from the unrestricted component of the subsidy;

2. � (1� �) (k � z) is the �rm�s net-of-subsidy total cost of k units of R&D e¤ort;

3. [�kp�+ (1� �kp)V (p)] is the expected bene�t from k units of R&D e¤ort;

4. �kp (1� p)V 0 (p) is the expectation, with k units of R&D e¤ort, of the option value of waiting

that is foregone if the �rm achieves a breakthrough.

Proposition 1 characterizes the �rm�s optimal R&D strategy.

Proposition 1 Given a subsidy policy a =(z; s; �) ; let p1(a) be the solution to14

�p

�
�� (s� �z)

r

�
r

r + �z
� (1� �)� = 0; (7)

13The approach is to form a Taylor expansion of V (p) (ignoring the higher order terms which disappear as dt goes to
0), which gives

V (p+ dp) = V (p) + V 0 (p) dp = V (p)� �kp (1� p)V 0 (p) dt:

Substituting this into (5), taking limits as dt ! 0, and simplifying yields (6).
14Because s

r
< �, it follows that �� s��z

r
> 0 for all feasible s and z, and thus the solution to (7) is such that p > 0.
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that is

p1(a) =
� (1� �)

�
�
��

�
s��z
r

�� �
r

r+�z

� : (8)

Then for any arbitrary belief p 2 [0; 1], the monopolist�s optimal R&D strategy is

k1(p) =

8><>: 1 if p > p1(a)

z if p � p1(a)
;

and its value function is

V1 (p) =

8><>:
s�(1��)����z

r + �
r+�

�
��

h
s�(1��)����z

r

i�
p+B1(a)p

�
1�p
p

� r+�
�

if p > p1(a)

s��z
r + �z

r+�z
r��(s��z)

r p if p � p1(a)
;

where

B1(a) ,
�� (1� z) (1� �)

r (r + �)

�
1� p1(a)
p1(a)

�� r
�

:

According to Proposition 1, the monopolist�s optimal investment decision k1(p) is a �bang-bang�

rule: k either equals the minimum required level z, or the maximum feasible level 1, depending on

whether its belief p about the project�s viability is greater or less than p1(a). We refer to p1(a) as the

abandonment threshold because it is the point at which the �rm abandons a ��at out�commitment to

the R&D program.

A �rm�s realized (i.e., equilibrium path) behavior under the optimal policy depends on its prior belief

about the project�s viability, p0. If the �rm is su¢ ciently optimistic about the project�s viability ex

ante so that p1(a) < p0, there exists a non-empty interval (p1(a); p0] of posterior beliefs p over which it

exerts maximum R&D e¤ort (i.e., k = 1), an interval we refer to as the range of maximum investment.15

In this case, the �rm begins by investing �at out. As time passes without a breakthrough, it becomes

more pessimistic about the viability of the project, but as long as the posterior falls within the range

of maximum investment, the �rm continues to exert maximum R&D e¤ort. Once its posterior falls to

p1(a), the �rm switches from ��at out�investment to the minimum level mandated by the government

(i.e., k = z). If, by contrast, the �rm is su¢ ciently pessimistic about the viability of the project ex ante

so that p0 � p1(a), the range of maximum investment is empty, and the �rm begins by exerting the

15Clearly, this case cannot arise if p1(a) � 1.
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minimum mandated level z and continues doing so as long as a breakthrough does not occur.

The abandonment threshold comes from a �marginal cost equals marginal bene�t� condition (7).

The marginal cost of an additional unit of R&D e¤ort above the minimum threshold is (1 � �)�.

The matching component of the subsidy � thus reduces the �rm�s marginal cost. The �rm�s marginal

bene�t equals �p
�
�� s��z

r

�
r

r+�z . The marginal bene�t consists of two components: (a) the incremental

increase in the likelihood of a breakthrough, �p; and (b) the net prize to the �rm if a breakthrough

occurs,
�
�� s��z

r

�
r

r+�z . The �rm�s net prize is the present value of pro�ts from a breakthrough, �,

minus the present value of the fungible portion of the subsidy, s��zr , which the �rm foregoes if it achieves

a breakthrough. The net prize is further �de�ated�by the term r
r+�z which is less than 1 when z > 0;

as z increases the extent of this de�ation increases, and the �rm�s marginal bene�t falls.16

The incentive properties of the three policy instruments follow immediately from (8). Suppose a

and p0 are such that p1(a) < p0. Then

� Holding s and z �xed, an increase in the matching rate � decreases the abandonment threshold,

thus expanding the range of maximum investment;

� Holding � and z �xed, an increase in the baseline subsidy s (which thus increases the unrestricted

portion of the subsidy s � �z) increases the abandonment threshold, thus contracting the range

of maximum investment;

� Holding � �xed and the unrestricted portion of the subsidy s� �z �xed, an increase in the man-

dated minimum z increases the abandonment threshold, thus contracting the range of maximum

investment.

Suppose, by contrast, a and p0 are such that p1(a) � p0, so there is no range of maximum investment.

Then, holding s and z �xed, a su¢ ciently large increase in the matching rate � could give rise to a
16Formally, it can be shown that r

r+�z
is the arc elasticity of the expected present value of dollar with respect to z.

Speci�cally:

r

r + �z
=

E(e�r
~T jk=1)�E(e�r ~T jk=z)
E(e�r ~T jk=1)

1�z
1

;

where eT denotes the time to discovery; E(e�r eT jk = 1) = R1
0
e�rt�e��tdt = �

�+r
is the expected present value of $1 when

the �rm invests �at out; and E(e�r
eT jk = z) =

R1
0
e�rt�ze��ztdt = �z

�z+r
is the expected present value of $1 when the

�rm invests at level z 2 [0; 1]. These expressions arise because, conditional on the project being viable, if the investment
e¤ort is a constant k, then discovery time is an exponetial random variable with parameter �k. Thus, r

r+�z
represents

(approximately) the percentage change in the expected value of $1 worth of a prize per one pecent change in R&D e¤ort
above the minimum level. When z = 0, this elasticity equals 1, As the mandated minimum increases, this elasticity
decreases.
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non-empty range of maximum investment, but increases in either s or z (holding � �xed ) would not

do so� the �rm would continue to invest at the minimum mandated level.

Both the unrestricted component of the subsidy s and the minimum mandate z are a drag on R&D

incentives. By investing more heavily and accelerating the expected time to a breakthrough, the �rm

brings to an end more quickly the �ow s � �z of fungible bene�ts. Increases in unrestricted funding

magnify this negative consequence. Furthermore, the minimum mandate z itself becomes a drag on

R&D incentives for a di¤erent reason. When k = z, the �rm, in e¤ect, receives a fully-funded option

from the government: the government is paying for the R&D investment z, but the �rm receives the

prize � if a discovery is made. A �rm faces a trade-o¤ between accelerating the time to breakthrough

at its own cost and retaining the free option from the government. A larger z increases the option value

and thus reduces a �rm�s incentives to use its own resources for R&D.

We reinforce these insights by considering the special cases of a pure matching subsidy, an earmarked

subsidy, and a pure unrestricted subsidy, which have been de�ned in Section 2, and comparing the

outcomes in those cases to the case in which the �rm does not receive a subsidy. Using (8), when the

�rm does not receive a subsidy, its abandonment threshold is

pNO1 =
�

��
:

The abandonment thresholds pM1 , p
E
1 , and p

U
1 for a pure matching subsidy, earmarked subsidy, and

unrestricted subsidy are respectively

pM1 =
(1� �)�
��

:

pE1 =
�

��
�

r
r+�z

� :
pU1 =

�

�
�
�� s

r

� :
From these expressions we see that

� pM1 � pNO1 , i.e., with the pure matching subsidy, the �rm invests in the R&D project for at

least as long as it would have in the absence of a subsidy and strictly longer if (1��)��� < p0.

If p0 2
�
(1��)�
�� ; ���

�
, a pure matching subsidy induces the �rm to invest in a project that a

15



non-subsidized �rm would not have.

� pE1 � pNO1 , i.e., with an earmarked subsidy, the �rm stops funding R&D from its own resources

at least as soon as it would have without a subsidy and strictly sooner if p0 > �
�� . If p0 2�

�
�� ;

�
��( r

r+�z )

�
then net-of-subsidy R&D spending by a �rm receiving an earmarked subsidy

would be zero, while R&D spending by a non-subsidized �rm would be positive. In other words,

the subsidy would crowd-out the private R&D investment.

� pU1 � pNO1 , i.e., with a pure unrestricted subsidy, the �rm stops investing in the R&D project

at least as soon as it would have in the absence of a subsidy and strictly sooner if p0 > �
�� . If

p0 2
�

�
�� ;

�
�[�� s

r ]

�
a pure unrestricted subsidy induces the �rm to shut down investment in a

project that a non-subsidized �rm would have continued to fund.

It is important to note that even though increases in the matching rate decrease the abandonment

threshold and thus expand the range of maximum investment, the impact of the matching subsidy on

cumulative R&D investment need not be especially �cost e¤ective.�We can see this by considering a

setting in which the prior p0 is extremely close to 1. If pNO1 < 1, an unsubsidized �rm would initially

invest in R&D, and since the posterior p would initially evolve very slowly (because the �rm is virtually

certain that the project is viable), a long period of time would have to pass with no breakthrough before

the �rm abandoned its e¤orts. A matching subsidy would indeed expand the time the �rm persisted

with the project, but for a signi�cant period of time the government would be reimbursing some of

the �rm�s R&D expenses even though the �rm would have invested in R&D even had it not received

that reimbursement over this time frame. As we discuss below, a consideration of this sort becomes

potentially relevant if the �nancing of subsidies entails a positive shadow cost of public funds.

3.2 R&D by Multiple Firms (N > 1)

We now consider the case in which N �rms compete to achieve the R&D breakthrough. With N �rms,

strategic behavior introduces the possibility of free-riding, which in turn in�uences how subsidy policy

shapes incentives.
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The value function of �rm i; i = 1; ::; N; is given by the recursion

V i (p) = max
ki2[z;1]

264 �s� ��z � � (1� �) ki� dt+ �pkidt�+ �pK�idt��

+
�
1� �p

�
ki +K�i� dt� e�rdtV i (p+ dp)

375 ; (9)

where K�i =
P
j 6=i k

j is the sum of the R&D investments by �rm i�s rivals. We can rewrite the value

function in (9) as a di¤erential equation:

(1 + r)V i (p) = s� �z + max
ki2[z;1]

8><>:
�
�kip�+ �pK�i��+ (1� �

�
ki +K�i� p)V i (p)�

�� (1� �) (k � z)� �
�
ki +K�i� p (1� p)V i0 (p)

9>=>; : (10)

As in the case of N = 1, a �rm�s value has four components. Two of these components are identical

to the monopoly case; the other two di¤er due to the presence of competitors who can also achieve the

breakthrough:

1. s� �z is the �ow bene�t from the unrestricted component of its subsidy;

2. � (1� �) (k � z) is the �rm�s net-of-subsidy total cost of ki units of R&D e¤ort;

3.
�
�kip�+ �pK�i��+ (1� �

�
ki +K�i� p)V i (p)� is the expected bene�t to a �rm from its own ki

units of R&D e¤ort and its rivals�collective R&D e¤ort K�i.

4. �
�
ki +K�i� p (1� p)V i0 (p) is the expectation, with ki+ K�i units of R&D e¤ort in total, of the

option value of waiting that is foregone if some �rm achieves a breakthrough.

Throughout, we focus on the symmetric equilibrium, i.e., k1 = : : : = kN = k, which we characterize

as follows:

Proposition 2 Let

pN (a) =
� (1� �)

�
�h
�� (s��z)

r

i �
r

r+�Nz

�
+ (N � 1) (1� �)�

�
�z

r+�Nz

�� ; (11)

and de�ne

�(z; s) , 1�
��

�
s��z
r

�
�

r

r + �z
2 [0; 1]: (12)
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(i) If the spillover � exceeds the critical level �(z; s), there exists a unique symmetric Markov perfect

equilibrium with the following strategy:17

kN (p) =

8>>>><>>>>:
1 if p � qN (a)

rVMN (p)�s+��z
(N�1)(�(1��)��p(1��)�) if pN (a) > p > qN (a)

z if p � pN (a)

;

and an individual �rm�s value function is

VN (p) =

8>>>>><>>>>>:
s��(1��)���z

r +
�N

�
r(1��)�

N
+r���s+�(1��)+��z

�
r(r+�N) p+BH(a)p

�
1�p
p

� r+�N
�N

if p � qN (a) (VN1)

���(1��)�
� �BM (a) (1� p) + (1��)�(1�p)

� ln 1�pp if pN (a) < p < qN (a) (VN2)

s��z
r +

�Nz
h
r(1��)�

N
+r���s+�z

i
r(r+�Nz) p if p � pN (a) (VN3)

where BM (a) equates (VN2) and (VN3) at p = pN (a); qN (a) satis�es

r
h
���(1��)�

� �BM (a) (1� qN ) + (1��)�(1�qN )
� ln 1�qNqN

i
� s+ ��z

(N � 1) (� (1� �)� �qN (1� �)�)
= 1; (13)

and BH(a) equates (VN1) and (VN2) at p = qN (a):

(ii) If the spillover � is below the critical level �(z; s), there exists a unique symmetric Markov perfect

equilibrium with the following strategy:

kN (p) =

8><>: 1 if p > pN (a)

z if p � pN (a)
;

with the value function

VN (p) =

8><>:
s��(1��)

r +
�N

�
r(1��)�

N
+r���s+�(1��)

�
r(r+�N) p+B�H(a)p

�
1�p
p

� r+�N
�N

if p > pN (a) (VN4)

s��z(1��)
r +

�Nz
h
r(1��)�

N
+r���s+�z(1��)

i
r(r+�Nz) p if p � pN (a): (VN5)

;

where B�H(a) equates (VN4) and (VN5) at p = pN :

Panel (a) of Figure 1 illustrates the equilibrium investment policy when the spillover parameter �

17Recall that the subscript N denotes the N -�rm case.
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Figure 1: Equilibrium investment strategy with N �rms.

exceeds the critical level �(z; s). In contrast to monopoly, in which the equilibrium investment policy is

�bang-bang,�there is a range of beliefs (pN (a); qN (a)) over which kN (p) 2 (z; 1). If the posterior belief

falls to the slowdown threshold qN (a), �rms start to taper o¤ their research e¤orts by reducing k below

1. If the posterior reaches the abandonment threshold pN (a), a �rm chooses the minimum required

R&D e¤ort, kN (p) = z:

The equilibrium involves kN (p) 2 (z; 1) because of a free-rider problem. The free-rider problem arises

because the �rm can achieve a positive payo¤ �� from spillover even if it loses the R&D competition, a

phenomenon that does not arise under monopoly. In particular, when � > �(z; s) and p 2 (pN (a); qN (a)),

given that all other �rms invest ��at out,� it will be optimal for a �rm to reduce its R&D investment

below the maximum level. On the other hand, though, given that all other �rms invest at the minimum
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level, it will be optimal for a �rm to invest ��at out�in R&D. The �concession�to the free-rider problem

that is made in equilibrium is that for p 2 (pN (a); qN (a)), all �rms reduce k to a positive number less

than 1. The equilibrium value of kN (p) is such that when a �rm�s N � 1 competitors invest kN (p), it

is indi¤erent in investing among all k 2 (z; 1) and thus chooses kN (p) in a symmetric equilibrium.

By contrast, when the spillover parameter is less than �(z; s), the free-rider problem does not arise,

and as shown in panel (b) of Figure 1, the equilibrium investment policy is �bang-bang,� as in the

case of a monopoly. However, the abandonment threshold pN (a) may not correspond to the monopoly

threshold p1(a). In fact, for any subsidy policy such that z > 0, then using (8) and (11), we have18

p1(a)

pN (a)
=
�
�h
�� (s��z)

r

i
r

r+�Nz + (N � 1) (1� �)� �z
r+�Nz

�
�
�
��

�
s��z
r

��
r

r+�z

> 1; (14)

i.e., the range of maximum investment is greater with N �rms than with a monopolist. The intuition is

this. The fully funded option that z provides when a �rm ceases R&D investment above the minimum

mandate becomes less valuable when it competes with N � 1 other �rms, each of who could potentially

get the prize from the breakthrough. As a result, the minimum mandate z is less of a drag on R&D

incentives with N �rms than with a single �rm.

Because � depends on z and s, whether or not free riding arises in equilibrium depends on the subsidy

policy. We note that if there is neither unrestricted funding nor minimum investment mandate � i.e.,

z = s = 0 � then �(z; s) = 0, and the free-rider problem always arises. This tells us that a necessary

condition for avoiding the free-rider problem is to establish a mandated minimum level of R&D (z > 0)

or provide positive baseline funding (s > 0), or both. To understand why, recall from the discussion of

monopoly that a subsidy with an unrestricted component s��z creates an implicit loss for the �rm when

it achieves a breakthrough. By the same token, an unrestricted component creates an implicit loss when

another �rm achieves a breakthrough. Thus, the unrestricted component of the subsidy o¤sets part of

the gain the �rm receives when another �rm makes the discovery, thereby reducing the temptation to

free ride. A subsidy policy with a minimum mandate also creates an implicit loss for the �rm when

another �rm achieves the breakthrough, but for a di¤erent reason. To see why, note that when k = z,

the �rm is receiving an option (the possibility that it, or another �rm, achieves a breakthrough) that is

fully paid for by the government. When another �rm achieves a breakthrough, this government-funded

18Recall that � > (s��z)
r

given our parameter assumptions, so the condition in (14) is meaningful.
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option goes away, creating an implicit loss that can o¤set some of the gains from free riding. Thus, in

contrast to the monopoly case, in which increases in s and z had unambiguously adverse e¤ects on the

provision of R&D, under R&D competition s and/or z may have potentially bene�cial incentive e¤ects

by mitigating the extent of free riding behavior by �rms.

Each of the policy choices a¤ects investment incentives through the entire equilibrium strategy kN (p).

These e¤ects cannot be determined analytically, but the expression for the abandonment threshold in

(11) has these implications:

� Holding s and z �xed, an increase in the matching rate � decreases the N -�rm equilibrium aban-

donment threshold, thus expanding the range over which �rm invests in excess of the mandated

minimum;

� Holding � and z �xed, an increase in the baseline subsidy s (which thus increases the unrestricted

component of the subsidy s� �z) increases the N -�rm equilibrium abandonment threshold, thus

contracting the range over which the �rm invests in excess of the mandated minimum.

This discussion hints at an interesting tension involving the baseline subsidy s. On the one hand, it

can crowd out private R&D investment, by contracting the range over which the �rm invests in excess

of the mandated minimum. On the other hand, it can counteract the free-rider problem. In the next

section, we will see that in designing a subsidy scheme when the shadow cost of public funds is 0, the

government can exploit this tension.

Summarizing the impact of subsidies in the N -�rm case, if s and z are su¢ ciently large, the free-rider

problem will not arise in equilibrium. However, changes in � have no impact on free riding. As in the

monopoly case, increases in � decrease the abandonment threshold pN (a) (thus expanding the range of

private funding of R&D), while increases in s increase the abandonment threshold. Unlike the monopoly

case, changes in z have an ambiguous impact on the abandonment threshold. The impact of z, s, and

� on the slowdown threshold qN (a) and the equilibrium investment policy kN (p) more generally cannot

be determined analytically.

The lesson of this section is that the way in which R&D is subsidized matters. Certain types of

subsidies (i.e., earmarked subsidies in the case of N = 1) may crowd out private investment, while

other types of subsidies (i.e., a pure matching subsidy in which a �rm undertaking R&D is reimbursed a
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fraction of its R&D expenses) may stimulate private investment. This suggests that empirical studies of

the impact of R&D subsidies on private R&D investment need to be cognizant of the subsidy mechanism.

4 Optimal Subsidy Policy Under �If� and �When�Uncertainty For

an Informationally Constrained Policy Maker

In the previous section, we have shown that a �rm�s incentive to invest in R&D depends on how

R&D subsidies are structured. We now turn to the question of the best subsidy policy. Recall our

assumption that the government neither knows the prior belief p0 nor has probabilistic beliefs describing

its likelihood, which prevents the government from o¤ering a contract that ties the parameters of the

subsidy with the posterior belief that determines a �rm�s R&D strategy. Again, we begin with monopoly

R&D and then turn to R&D competition.

4.1 Monopoly R&D: N = 1

As a benchmark, we begin by noting that the �rst-best R&D investment policy when N = 1 is19

k�(p) =

8><>: 1 if p > p�

0 if p � p�
; (15)

where

p� =
�

� (CS +�)
< 1: (16)

The �rst-best abandonment threshold p� is the reciprocal of the social bene�t-cost ratio �(CS+�)
� : Note

that p� < pNO1 , so under the �rst-best policy, investment in the R&D project continues at least as long

as it would have in an unsubsidized �rm, and strictly longer if p� < p0, i.e., whenever there is any

investment in the �rst-best solution. If p0 2
�
p�; ���

�
, the �rst-best policy entails investment for some

length of time, while the unsubsidized �rm opts for no investment at all. Thus, an unsubsidized �rm

underinvests relative to the �rst-best level.

If the government knew the �rm�s prior p0 (and thus the subsequent posterior beliefs p), it could

direct the �rm to follow the policy in (15) and (16) and achieve the �rst-best welfare level. Our assump-

19Derivation of this policy is a straightforward extension of the proof of Proposition 1 in which we set s = z = � = 0,
and replace � with CS +�.
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tion that the government does not know p0 rules this out. Instead, we assume that the government

must rely on subsidies to provide incentives to the �rm. Throughout the analysis, we assume that the

subsidy is funded by revenues from broad-based taxes that do not materially a¤ect the �rm�s incentive

to invest in R&D. However, we do allow for the possibility of a shadow cost of public funds  � 0. That

is, a subsidy S to the �rm entails a transfer of S from taxpayers plus a social cost S, where  � 0.

In addition to having a social cost, a subsidy policy could also be distortionary in the sense that it

could induce underinvestment or overinvestment in R&D relative to the �rst-best level. Consider, for

example, a policy a such that p1(a) < p� (which would be due to an especially generous matching rate).

If p0 2 [p1(a); p�], the �rst-best policy calls for no investment at all, while the subsidy policy induces

the �rm to invest ��at-out� for at least some period of time, and if z > 0, the �rm would continue to

invest once its posterior fell to p1(a). In this case, we have (possibly rather signi�cant) overinvestment.

On the other hand, for a subsidy policy such that p� < p1(a), if p0 2 [p�; p1(a)], the �rm would spend

none of its own funds investing (though if z > 0, it would invest at the minimum mandated level), while

the �rst-best solution would have given rise to non-empty maximum investment range. In this case,

then, we would have underinvestment.

Before turning to consideration of optimal subsidy policy under incomplete information, we note

that subsidies with a shadow cost of public funds can potentially create subtle trade-o¤s between the

various policy instruments, trade-o¤s that depend on the �rm�s private information. To illustrate,

suppose that the �rm is virtually certain that the project is viable so that p0 is extremely close to 1.

As discussed above, if pNO1 < 1, the �rm would be willing to invest for quite a while even if it did not

receive a subsidy. A pure matching subsidy (0; 0; �) would extend the range of maximum investment and

thus could have potential welfare bene�ts for the government in the eventuality that a long time passes

without a breakthrough. However, it might not have much impact in the near, or even intermediate,

term (since p(t) would remain close to p0 for quite a while), and if  > 0, this could prove to be a costly

way to motivate the �rm because it transfers socially valuable funds to the �rm to do what (in the near

term, at least) it would have done anyway. By contrast, an earmarked subsidy (z; �z; 0) would have

the drawback that it would reduce the range of maximum investment. However, for z su¢ ciently small,

pE1 < 1 and since (by assumption) p0 � 1, the �rm would invest �at out at least for a while (and it

would continue to invest a modest amount z thereafter). With a positive shadow cost of public funds, it

is conceivable that the government might prefer the potentially smaller subsidy payments that it would
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make under the earmarked subsidy to the bigger payments it might make under the pure matching

subsidy, even though the former policy has the e¤ect of suppressing R&D incentives to some extent.

4.1.1 Optimal R&D Policy Under Incomplete Information: N = 1

What subsidy policy would the government choose in the face of incomplete information about the

prior p0? To develop an answer to this question, we begin by deriving the expression for expected social

welfare induced by the �rm�s optimal investment rule k1 (p) derived in Proposition 1. To do so, we note

that if the �rm invests k1 (p) units in the R&D project for the time interval [t; t + dt) when the belief

about the project�s viability is p; the social welfare schedule W1(p) is given recursively as follows:

W1 (p) = ��k1(p)dt�  [s+ ��(k1(p)� z)] dt

+ �k1(p)pdt [CS +�] + (1� �k1(p)pdt)e�rdtW1 (p+ dp) :

This recursion can be transformed into the following di¤erential equation:

0 = ��k1(p)� [s+ ��(k1(p)� z)]+�k1(p)p (CS +�)� (r + �k1(p)p)W (p)��k1(p)p (1� p)W 0 (p) :

(17)

In the Appendix, we show that the solution to this di¤erential equation is

W1 (p) =

8><>: �
�
�+s+��(1�z)

r

�
+ �

r+�

h
CS +�+

�
�+s+��(1�z)

r

�i
p+BW p

�
1�p
p

� r+�
�

if p > p1(a)

�
��z+s

r

�
+ �z

r+�z

�
CS +�+

��z+s
r

��
p if p � p1(a)

;

(18)

where p1(a) is the abandonment threshold in (8), and BW makes the welfare schedule continuous at

p = p1(a).20

The function W1 (p) is expected social welfare for any arbitrary posterior belief p when the �rm�s

investment strategy is a best response to subsidy policy a. It follows that evaluating W1 (p) at p = p0

gives us the government�s expected social welfare if it o¤ered policy a and it knew the �rm�s prior

belief p0. We call this conditional expected social welfare (i.e., conditioned on p0), and we denote it by

20Continuity of the welfare schedule follows because at p = p1(a), the �rm is indi¤erent between k = z and k = 1.
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W1(p0ja). Speci�cally,

W1(p0ja) =

8><>: 	(BW (p1(a);a);a) p0 2 [p1(a); 1]

�
��z+s

r

�
+ �z

r+�z

�
CS +�+

��z+s
r

��
p0 p0 2 [0; p1(a)]

; (19)

where

	(BW ;a) ,

8>>>><>>>>:
�
�
�+s+��(1�z)

r

�
+ �
r+�

h
CS +�+

�
�+s+��(1�z)

r

�i
p0

+BW p0

�
1�p0
p0

� r+�
�

9>>>>=>>>>; ;

BW (p1;a) ,

8>>>><>>>>:
�(1�z)
r + ��(1�z)

r �
�
r+�

h
CS +�+

�
�+s+��(1�z)

r

�i
p1

+ �z
r+�z

�
CS +�+

��z+s
r

��
p1

9>>>>=>>>>;
p1

�
1�p1
p1

� r+�
�

;

and

p1 = p1(a):

We emphasize that the government cannot actually condition on p0 (since it does not know what it is),

nor can it �pin down�an expectation of W1(p0ja) with respect to a prior distribution over p0 since we

have assumed it does not have a unique prior. That said, it is extremely useful to consider the problem

of choosing a subsidy policy to maximize conditional expected welfare:

max
a2A

W1(p0ja); (20)

Let a��(p0) denote the solution to this problem. If it was the case that the solution to this problem was

independent of p0� i.e., a��(p0) = a��� then the government could implement a�� without requiring

knowledge of the �rm�s private information, and it would be assured that it would attain the highest

welfare it could possibly achieve whatever the �rm�s actual type p0 might be. Theoretically, this

situation would be a belief-free incomplete information game (see Bergemann and Morris, 2007), where

each uninformed player (e.g., the government here) takes an agnostic view about opponents�unobserved

types by refraining from assigning potentially restrictive probability measures on them (as conventional
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Bayesian models do). In this case, the policy in question quali�es as an ex post equilibrium. Informally,

an ex post equilibrium is such that no uninformed player will �nd it pro�table to unilaterally deviate

from her strategy even if her incomplete information (about opponents�types) is replaced by complete

information. It is obvious to see that here, even if the government knows the true value of p0, ceteris

paribus a��(p0) would remain an optimal policy. The ex post equilibrium status attached to this policy

gives it a robust justi�cation in terms of information requirements.

We now show that when  = 0� a subsidy is a pure transfer between taxpayers and the �rm� an

ex post equilibrium exists; it takes a strikingly simple form, and it attains �rst-best welfare.

Proposition 3 When a single �rm engages in R&D and if a subsidy is a pure transfer between con-

sumers and �rms, i.e.,  = 0; then the following subsidy policy solves the maximization problem in (20)

and thus constitutes an ex post equilibrium:

a��(p0) = a
�� = (0; 0; 1� �) for all p0 2 [0; 1];

where � = �
�+CS . This policy induces the �rm to choose an investment policy k1(p) = k�(p) and thus

achieves the �rst-best level of ex ante welfare for any prior belief p0.

Proposition 3 implies that when subsidies have no shadow cost, there is a simple way to achieve the

�rst-best outcome: use a pure matching subsidy whose matching rate is 1 minus the appropriability

ratio. No mandated minimum level of R&D is necessary, and it does not require any knowledge of the

�rm�s private information for its implementation by the government.

Does this result generalize to the case in which the shadow cost of public funds  is positive? The

answer is no: the �rst-best policy cannot be implemented through subsidies, and indeed, no ex post

equilibrium exits for  > 0. We formalize this in the following proposition.

Proposition 4 If pNO1 < 1, then for  > 0 there exists no ex post equilibrium, i.e., the solution to the

optimization in (20) depends on p0.21

The intuition for this result is as follows. When the shadow cost of public funds is positive, the

government faces a trade-o¤ between using a subsidy to induce more R&D and incurring higher social

21Numerical examples can show that the restriction pNO1 < 1 (which is useful for simple analytical proof) is unnecessary
for the non-existence result.
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costs due to the subsidy, and this trade o¤ delicately depends on the value of p0. To see why, suppose

that the government knew that the �rm was completely certain of the project�s viability, i.e., p0 = 1.

In this case, the subsidy policy that solves the optimization in (20) is no subsidy at all. This is because

(if pNO1 < 1) the government would be certain that an unsubsidized �rm would invest in R&D, no

matter how much time passed without a breakthrough. (Recall that when p0 = 1, there is no �if�

uncertainty, and thus p(t) = 1 for all t.) Thus, a socially costly subsidy would have no impact on the

�rm�s investment incentives. The problem, however, is the no-subsidy policy a = (0; 0; 0), while welfare

maximizing if the government was certain that p0 = 1, could be a poor policy if the government believed

that the �rm�s prior was something else.

The non-existence problem limits the general applicability of the solution concept of ex post equilib-

rium. For this reason, we now open a discussion of potentially suitable solution concepts for our policy

problem at hand.

4.1.2 What Policy Should the Government Choose When  > 0?

What criteria should the government use to determine a preferred subsidy policy when  > 0? We

proceed in two steps. First, we show that there exists a simple policy with the appealing feature that it

neither generates underinvestment nor overinvestment. Second� and more formally� we consider two

candidate decision criteria for the government which are suitable for belief-free incomplete information

games. The �rst criteria is (incomplete information) rationalizability; the second is the max-min cri-

terion. In our discussion we de�ne these two criteria, explore their relationship and what they imply

about policy, and �nally we indicate our preferred criterion.

Solving the Problem of Underinvestment without Inducing Overinvestment We saw earlier

that an unsubsidized �rm has a tendency to underinvest (relative to the �rst best), but that by subsi-

dizing the �rm, the government could conceivably induce overinvestment. With the government lacking

the ability to make �ne-tuned trade-o¤s between policy instruments because it has neither complete

nor probabilistic information about p0, a plausible criterion for a �good�R&D subsidy policy would be

one that solves the problem of underinvestment, while not inducing overinvestment. In this section, we

show that there is such a policy. Indeed, that policy is a natural extension of the policy characterized

in Proposition 3, and that it smoothly approaches that policy in the limit as  ! 0.
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Consider a matching rate constructed by generalizing the de�nition of ��� to

��� ,
CS
1+

�+ CS
1+

: (21)

Clearly, ��� = 1� � for  = 0. Further, let

p1
�
0; 0; ���

�
= p�� , �

�
�
�+ CS

1+

� (22)

be the abandonment threshold under the subsidy policy
�
0; 0; ���

�
. We now note two key properties of

the policy
�
0; 0; ���

�
:

p� (� + CS)� �� ��� � � 0 i¤ p � p�� ; (23)

and

p���
�
1� ���

�
� � 0 i¤ p � p�� : (24)

Note that the left hand sides of the �rst equalities in (23) and (24) are the �ow payo¤s for the government

and the �rm respectively. Therefore, under subsidy policy
�
0; 0; ���

�
both the �rm and the government

have zero �ow payo¤s for all k 2 [0; 1] for p = p�� , and their �ow payo¤s strictly increase in p. Note that

the two zero �ow payo¤ conditions imply that the �marginal cost equal to marginal bene�t condition�

is satis�ed at the same p�� for both the government and the �rm. In addition, both the �rm and the

government have zero continuation values for p = p�� . Thus, from the government�s perspective, given

that it has committed to pay a matching rate ��� , p
��
 is the optimal abandonment threshold. And from

the �rm�s perspective, given that it receives a pure matching subsidy ��� , p
��
 is the privately optimal

abandonment threshold. Thus, if the government o¤ers the policy
�
0; 0; ���

�
, it can be assured that

whatever the �rm�s private information it will invest in the way most preferred by the planner.

We note that the policy
�
0; 0; ���

�
has the intuitive feature that the matching rate is smaller than

���, and this rate decreases as the shadow cost of public funds increases. As the shadow cost increases

without bound, the matching rate goes to zero, i.e., the policy involves no subsidization whatsoever.
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Candidate Decision Criteria for a Belief-Free Incomplete Information Games We now

turn to more formal decision criteria for belief-free incomplete information games.22 We �rst consider

rationalizability. (See Pearce, 1984; Battiqalli and Sciniscalchi, 2003.)

Given any subsidy policy a 2 A, the �rm has a unique best response (as given by the bang-bang

rule, described in Proposition 1), which is rationalizable. This fact simpli�es the de�nition of the ratio-

nalizability (solution concept) for our game, so we only need to de�ne the government�s rationalizable

strategy.

De�nition 1 Let �A denote the Borel sigma algebra over A, and �(�A) the set of all probability

measures (i.e., mixed strategies) over �A. Let � be the Borel sigma algebra over [0; 1] and �(�)

the set of all probability measures (i.e., probabilistic beliefs) over �. A mixed strategy � 2 �(�A) is

rationalizable if 9� 2 �(�) such that

� = arg max
�02�(�A)

Z 1

0

Z
a2A

W1 (pja) d�0 (a) d� (p) :

Since the value function W is complicated, this de�nition of rationalizability is not particularly

operational. Fortunately there exists a more operational equivalent de�nition expressed in terms of

strict dominance. The following proposition states the equivalence result, which is an extension of the

�nite game result of Pearce (1984).

Proposition 5 The (mixed strategy) policy � 2 �(�A) is rationalizable if and only if � is not strictly

dominated in �(�A), i.e., @�00 2 �(�A) such that

Z 1

0

Z
a2A

W1 (pja) d�00 (a) d� (p) >
Z 1

0

Z
a2A

W1 (pja) d� (a) d� (p)

for all � 2 �(�).

In words, a rationalizable policy is a mixture over possible subsidy policies with the feature that there

is no other mixture over subsidy policies that gives the government a strictly higher expected welfare

for all conceivable beliefs � (�) over p0. Rationalizable policies thus have the appealing feature that they
22Besanko, Tong, and Wu (2016) provide a discussion of belief-free incomplete information games that goes beyond that

presented here, including an exploration of belief-free games in relation to other lines of literature on dyamic games of
incomplete information.
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exclude policies that are obviously �bad� in the sense of being strictly inferior for the government�s

conceivable beliefs.

To put this into further perspective, it is useful to turn to the max-min criterion. This criterion

has been featured prominently in the literature on decision under ambiguity (for example, see Gilboa

and Schmeidler, 1989). Ambiguity can, in general, be modeled as a set of multiple probabilistic beliefs,

allowing the �exibility to model belief-free incomplete information games, to which the concept of max-

min solution can be applied. In a policy making context, max-min would correspond to a setting in

which, although the government does not know what to believe about the �rm�s private information, it

wishes to follow a policy whose �worst case scenario�outcome is not inferior to any alternative policy.

Max-min is a potentially appealing decision criterion when policy makers (as often seems plausible) are

especially attuned to the need to avoid potentially severe policy mistakes.

De�nition 2 The (mixed strategy) policy � 2 �(�A) is a max-min solution if

� = arg max
�02�(�A)

min
�2�(�)

Z 1

0

Z
a2A

W1 (pja) d�0 (a) d� (p) :

How does the max-min criterion relate to rationalizability? The following proposition establishes

that being a max-min solution is a su¢ cient condition for rationalizability, i.e., the max-min solution

concept in our setting is no more encompassing (and conceivably less so) than rationalizability.

Proposition 6 All max-min solutions are rationalizable.

Does the converse hold true, which would then imply that the set of max-min solutions and ratio-

nalizable solutions are one in the same? To answer this question, we �rst derive the set of all max-min

solutions, which is also a subset of all non-dominated policies. Then we check whether we can �nd a

counter example, i.e., a policy that does not belong to this subset but is not strictly dominated by any

policy in this subset. If such an example can be found then it can be inferred that not all rationalizable

policies are max-min solutions, which would then imply that the max-min concept has more bite than

rationalizability in our context.

Proposition 7 The max-min value of all possible (mixed strategy) subsidy policies is zero, i.e.,

max
�02�(�A)

min
�2�(�)

Z 1

0

Z
a2A

W1 (pja) d�0 (a) d� (p) = 0:
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Figure 2: Solid curve: W1 (p0jaz) where az = (z; �z; 0). Dashed curve: W1 (p0j�̂) ; where �̂ is a mixed
strategy over rationalizable matching subsidies.

The set of all pure-strategy max-min solutions is Amaxmin ,
�
(0; 0; �) j� 2

�
0; ���

�	
. The set of all

mixed-strategy max-min solutions is f� 2 �(�A) j� is a mixed strategy over support Amaxming.

That is, the set of pure strategy max-min subsidy policies are those that involve no minimum

mandate or unrestricted component and have matching rates ranging from 0 (no subsidy whatsoever) up

to ��� . Furthermore, the pure matching policy
�
0; 0; ���

�
that induces neither over- nor underinvestment

is optimal under the max-min criterion.

To contrast this set of max-min policies with the set of rationalizable policies, consider the policy

az , (z; �z; 0) for some small z > 0. From the expression for W1 (p0ja) in (19), it is clear that

min�2�(�)
R 1
0 W1 (pjaz) d� (p) < 0, and hence az is not a max-min solution. However, we can �nd

numerical examples such that az cannot be strictly dominated by any mixed strategy over support

Amaxmin. Here we present one numerical example: let parameter values be � = 1, � = 0:1, r = 0:01,

� = 20, CS = 30,  = 0:5, and set z = 0:05. In this case, we have ��� = 0:5; p�� = 0:25; and

p1 (0; 0; 0) = 0:5 2
�
p�� ; 1

�
.

In Figure 2 the solid curve is W1 (p0jaz) and the dashed curve represents a mixed strategy b� over
the support

�
(0; 0; �) j� 2

�
0; ���

�	
. Letting W1 (p0jb�) , R

a2f(0;0;�)j�2[0;��� ]gW1 (pja) db� (a), for b� to
strictly dominate az, a necessary condition is that W1 (p0jb�) > W1 (p0jaz) for p0 = 1 and for all
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p0 2
�
p(az); p1 (0; 0; 0)

�
, where p (az) is de�ned such that W1

�
p (az) jaz

�
� 0. Numerically, p (az) =

0:391 3 2
�
p�� ; p1 (0; 0; 0)

�
: This example shows that if the constraint W1 (p0jb�) �W1 (pjaz) is imposed

for p 2
�
p (az) ; p1 (0; 0; 0)

	
then we must have W1 (pjb�) < W1 (pjaz) for p = 1 for all b� in the speci�ed

class of mixed strategies. This example reveals that the advantage of policy az over (pure strategy)

matching subsidies is that the former performs well for both (extreme high type) p0 = 1 and (low types)

p0 2
�
p (az) ; p1 (0; 0; 0)

�
(the interval between the two vertical dashed lines in Figure 2) at the same

time, while a (pure strategy) matching subsidy can perform well for only one of the two scenarios at a

time. Allowing mixed strategy matching subsidies can improve the performance of matching subsidy,

but a trade o¤ has to be made regarding how much probability weight to give to the matching subsidy

that performs well for each scenario. Nevertheless, no mixed strategy matching subsidy can outperform

the policy az for both p0 = 1 and p0 2
�
p (az) ; p1 (0; 0; 0)

	
.

This example augments the intuition presented earlier for why an earmarked subsidy such as az

would potentially be appealing to the government. For small z > 0, the investment by the extreme

high-type �rm, p0 = 1, is not distorted, while the incurred shadow cost of public funds would be small,

and the breakthrough would be likely to occur relatively early and end the subsidy. Meanwhile the

low types p0 2
�
p (az) ; p1 (0; 0; 0)

�
who would not invest without subsidy would be induced to invest.

However, this appeal may be o¤set by the unappealing property of policy az that for the lower types

p0 2
�
0; p (az)

�
, we have W1 (p0jaz) < 0.

This now leads to a reason for justifying a preference of the (stronger) max-min criterion to ratio-

nalizability. For as>0 = (z; s; �) 2 A such that s > 0, we have min�2�(�)
R 1
0 W1 (pjas>0) d� (p) < 0.

Moreover, for all p0 < p�� we have W1 (p0jas>0) < 0. The danger of a policy such as as>0 is that it

attracts investment by �rms of type p0 < p�� � that is , �rms with su¢ ciently pessimistic beliefs about

the viability of the project� which should not be induced to invest at all. The rationalizability criterion

may be too weak to eliminate such a policy while the max-min criterion can with certainty.

For this reason, our preferred criterion is max-min. The key policy implications that follow from

Proposition 7 are threefold:

� Under the max-min criterion, every optimal subsidy policy is a pure matching policy. A subsidy

policy with a minimum mandate or unrestricted component cannot satisfy the max-min criterion.

� Second, the matching rate under max-min policies ranges from 0 to ��� .
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� Third, there exists a unique optimal subsidy policy under max-min criterion that induces neither

underinvestment nor overinvestment in R&D, which is
�
0; 0; ���

�
:

One important appeal of the pure matching policy is that it provides a screening device for the

di¤erent types of �rm to self-select, allowing crucial private information to be utilized for social ben-

e�t. Policies with s > 0 compromises this self-selection mechanism and wastes the valuable private

information.

4.2 Optimal R&D Policy Under Incomplete Information: N > 1

With N �rms, the �rst-best R&D investment policy is a straightforward extension of the �rst-best

solution for the monopoly case:23

k�(p) =

8><>: 1 if p 2 [p�; 1]

0 if p 2 [0; p�]
;

where

p� =
�

�[CS +�+ (N � 1)��] < 1:

To explore what welfare can actually be attained, as in the case of N = 1 we de�ne the conditional

expected social welfare function WN (p0ja); which tells us the government�s expected social welfare if it

o¤ered policy a and it knew the �rm�s prior belief p0. Unlike the case of N = 1, WN (p0ja) does not

have a closed-form solution. In the Appendix, we characterize how it is determined.

As before, it is useful to consider the optimization program

max
a2A

WN (p0ja): (25)

An ex post equilibrium in a belief-free incomplete information game can be attained if there is a solution

to this problem that is independent of the prior p0. We now establish that when there is no shadow

cost of public funds ( = 0), the �rst-best outcome can be attained as an ex post equilibrium.

23 It is straightforward to transform this problem to one that is identical to the �rst-best problem under monopoly using
the transformations �0 = N�, �0 = N�, and �0 = �+ (N � 1)��.
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Proposition 8 With N > 1 identical �rms engaging in R&D, if a subsidy is a pure transfer between

consumers and �rms, i.e.,  = 0; then the following subsidy policy solves the maximization problem in

(25) and thus constitutes an ex post equilibrium:

a��(p0) = a
�� = (0; r��;

CS +N��

CS +�+ (N � 1)��) for all p0 2 [0; 1]:

This policy induces the �rm to choose an investment policy kN (p) = k�(p) and thus achieves the �rst-

best level of ex ante welfare for any prior belief p0. If there are no spillovers (� = 0), the optimal subsidy

policy for N �rms is identical to that for a monopoly.

In the absence of a shadow cost of public funds, the subsidy policy that implements the �rst-best

solution has an intuitively appealing form. The �rm receives an unrestricted subsidy s that equals

the �ow equivalent of the spillover bene�ts �� that it would have received had another �rm won the

R&D competition. This ensures that the only way that a �rm can improve its payo¤ is by winning the

R&D competition, thus eliminating the free-rider problem and making the �rms focus on winning the

competition. Though a positive value of s eliminates the free-rider problem, it does not fully align the

private marginal bene�t of R&D with the social marginal bene�t of R&D. By choosing the matching

rate � to equal the fraction of social surplus CS+N��
CS+�+(N�1)�� that is not internalized, private and social

incentives are aligned.

Does the result in Proposition 8 extend to the case when there is positive shadow cost of public

funds? Again as in the case of single-�rm R&D, the answer is no: an ex post equilibrium does not exist

for positive value of . To substantiate this claim, as well as to facilitate the analysis of the case of  > 0

and N > 1, we start by looking for a pure matching policy
�
0; 0; ���N

�
that overcomes the possibilities of

both overinvestment and underinvestment. Under such a policy, each �rm would terminate investment

at the threshold value:

pN
�
0; 0; ���N

�
= p��N ,

�
�
1� ���N

�
��

;

(which is the point of both zero �ow payo¤ and zero expected value for each �rm), and the conditional

government �ow payo¤and conditional welfare value become zero at p = p��N . Algebraically this implies:

�
�p��N [CS +�+ (N � 1) ��]� �� ���N�

	
NkN

�
p��N

�
= 0;
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which has the following solution and implication:

���N =

CS+(N�1)��
1+

�+ CS+(N�1)��
1+

;

p��N =
�

�
h
�+ CS+(N�1)��

1+

i :
Having de�ned p��N , we can now establish that an ex post equilibrium does not exist when  > 0.

Proposition 9 If pN (0; 0; 0) < qN (0; 0; 0) < 1, then for  > 0 there exists no ex post equilibrium.24

The intuition for this result is essentially the same as that for Proposition 4 in the case of a monopoly

R&D. That is, the trade-o¤ between the more R&D investment induced by a subsidy and the higher

social cost resulting from the subsidy depends on the value of p0 that is unknown to the government.

4.2.1 What Policy Should the Government Choose When  > 0 and Multiple Firms

Engage in R&D?

In the analysis of single-�rm R&D with positive value of , we have argued for adopting the max-min

criterion. The reasons employed in that argument can also be applied to the case of N > 1. Under this

criterion, we can establish that s = z = 0 is entailed.

Proposition 10 Under the max-min decision criterion, the optimal policy is a pure matching subsidy

(0; 0; �) such that � 2
h
0; ���N

i
. The abandonment threshold is pN (0; 0; �) =

�(1��)
�� .

Under the max-min decision criterion, if the optimal policy has a further emphasis on overcoming

the possibility of underinvestment, the best policy would be
�
0; 0; ���N

�
. This policy induces invest-

ment to terminate at p = p�� which is socially optimal. However, since (z; s) = (0; 0), the thresh-

old �� (z; s) = 0 � �, this policy cannot overcome the inter-�rm free-rider problem, and it therefore

cannot avoid underinvestment in terms of investment intensity; i.e., investment is not ��at-out� for

p 2
�
p��N ; qN

�
0; 0; ���N

��
.

24The restrictive condition: pN (0; 0; 0) < qN (0; 0; 0) < 1 is imposed for the convenience of an analytical proof. Numerical
examples show it is not a necessary condition for the result to hold.
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4.2.2 R&D Consortium

One approach to overcoming the free-rider problem is to allow �rms to cooperate by means of an N -

�rm research consortium. The research consortium serves as a vehicle for coordinating the investment

decision of each individual �rm, so that each �rm in the consortium, when faced with subsidy policy a,

solves the following problem:

V (p) = max
k2[z;1]

�
(s� ��z � � (1� �) k)dt+ �Nkpdt

�
�+ (N � 1) ��

N

�
+ (1� �Nkpdt) e�rdtV (p+ dp)

�
:

In contrast to the case of N = 1, each �rm in the consortium receives 1
N of the total private bene�t

� + (N � 1) ��. Moreover, because all �rms in the consortium simultaneously choose their individual

investment to be k, each �rm recognizes that the probability that a breakthrough will take place within

[t; t+ dt) is �Nkpdt.

This can be transformed into the following di¤erential equation

rV (p) = s� ��z + max
k2[z;1]

�
�� (1� �) k + �Nkp

��
�+ (N � 1) ��

N

�
� V (p)� (1� p)V 0 (p)

��
:

Like a monopolist, each �rm in the consortium has an optimal R&D policy kCN (p) that is bang-bang:

kCN (p) =

8><>: 1 if p > pCN (a)

z if p � pCN (a)
;

where the abandonment threshold pCN (a) is given by

pCN (a) =
�(1� �)

�
�
�+ (N � 1) ��� s��z

r

� �
r

r+�z

� :
As before, we consider the optimization program

max
a2A

WC
N (p0ja), (26)

whereWC
N (p0ja) is the conditional expected social welfare function induced by the research consortium�s

optimal investment plan. This welfare WC
N (p0ja) is fully analogous to W1 (p0ja), so we omit its expres-
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sion for brevity. An ex post equilibrium in a belief-free incomplete information game can be attained

if there is a solution to this problem that is independent of the prior p0. We now establish that when

there is no shadow cost of public funds ( = 0), the �rst-best outcome can be attained as an ex post

equilibrium.25

Proposition 11 When N �rms engage in cooperative R&D through a research consortium, if a subsidy

is a pure transfer between consumers and �rms, i.e.,  = 0; then the following subsidy policy solves the

maximization problem in (26) and thus constitutes an ex post equilibrium: (z��(p0); s��(p0); ���(p0)) =

(z��; s��; ���) = (0; 0; 1 � �) for all p0 2 [0; 1] (where recall � = �+(N�1)��
�+(N�1)��+CS ). This policy induces

the consortium to choose an investment policy kCN (p) = k
�(p) and thus achieves the �rst-best level of ex

ante welfare for any prior belief p0.

When there is a zero shadow cost of public funds, the government is indi¤erent between subsidizing

N non-cooperative �rms or N �rms organized into a research consortium, provided that the matching

rates and unrestricted subsidies are appropriately chosen as indicated in Propositions 8 and 11.

We note from Proposition 11 that when � > 0, the matching rate CS
CS+�+(N�1)�� needed to attain

the �rst-best outcome under a research consortium is less than the matching rate CS+N��
CS+�+(N�1)�� needed

to attain the �rst-best outcome under non-cooperative research. Further, with a research consortium

attaining the �rst-best outcome entails no unrestricted subsidy, while an unrestricted subsidy is required

under non-cooperative research. Thus, when there is no shadow cost of public funds, attaining the

�rst-best outcome with a research consortium involves a smaller overall subsidy than attaining the �rst-

best outcome with N non-cooperative �rms. This suggests that the research consortium may have an

advantage over non-cooperative research when the shadow cost of public funds is positive.

If there is a positive shadow cost of public funds, the analysis of the policy toward the research

consortium is similar to the case of monopoly. Our preferred decision criterion therefore will also be the

max-min criterion.

Proposition 12 Under a research consortium, if  > 0 and the max-min decision criterion is adopted,

then the optimal subsidy policy is a pure matching subsidy (0; 0; �) such that � 2
�
0;

CS
1+

CS
1+

+�+(N�1)��

�
.

The abandonment threshold is pCN (0; 0; �) =
�(1��)

�[�+(N�1)��] :

25Because the proof of Proposition 11 is directly analogous to the proof of Proposition 3 in the Appendix and is thus
omitted.
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Under a research consortium and the max-min decision criterion by the government agency, if the

optimal policy has a further emphasis on overcoming possible underinvestment, then the optimal policy

should be
�
0; 0;

CS
1+

CS
1+

+�+(N�1)��

�
, and this policy can overcome the possibility of underinvestment

(both in terms of cumulative investment and investment intensity at each point of time). The lowest

abandonment threshold is

p =

�

�
1�

CS
1+

CS
1+

+�+(N�1)��

�
� [� + (N � 1)��] =

�

�
h
CS
1+ +�+ (N � 1)��

i < p��N = �

�
h
�+ CS+(N�1)��

1+

i :
The investment under the research consortium is thus higher than under non-cooperative research both

in terms of cumulative investment and investment intensity. The inter-�rm free-rider problem worsens

the non-cooperative �rms� incentive for investing which cannot be adequately compensated by pure

matching subsidy policy. A research consortium has the potential to overcome this problem. To bring

this point into sharp relief, note that for the same pure matching subsidy policy (0; 0; �), we have

pCN (0; 0; �) =
�(1� �)

� [� + (N � 1) ��] < pN (0; 0; �) =
� (1� �)
��

;

which con�rms that research consortium can help lower the abandonment threshold value.

5 Conclusions

In this paper, we study the optimal subsidy policy for research programs when the �rm is privately

informed about project viability and the government is unable to form a unique prior belief about

the �rm�s private information. We �rst showed that di¤erent subsidy tools a¤ect the �rm�s R&D

incentives in di¤erent ways. In the case of monopoly R&D, a matching subsidy can stimulate R&D

activity, while earmarked and unrestricted subsidies can suppress R&D activity. In the case of R&D

competition, the incentive e¤ects of subsidies are somewhat more complex. As in the case of monopoly

R&D, an increase (ceteris paribus) in the matching rate expands the range over which �rms invest in

excess of the mandated minimum, while increases in the baseline unrestricted subsidy have the opposite

e¤ect. However, R&D competition involves the possibility of free riding (translating into a range in

which, in equilibrium, �rms�investment intensity is greater than the mandated minimum but less than
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the maximum feasible amount), and increases in both the mandated minimum and the unrestricted

component of the subsidy can mitigate the extent of free riding by the �rm.

We then studied the government�s choice of an optimal subsidy policy. If there is no shadow cost

of public funding, we show that the government can attain the �rst-best welfare outcome as an ex post

(belief-free) equilibrium through the use of very simple subsidy policies. In the case of monopoly, the

optimal subsidy scheme is a pure matching policy with the matching rate equal to the ratio of the portion

of social welfare that is not appropriable by the �rm to total social welfare. In the case of competition,

the optimal policy is a combination of two instruments: a matching subsidy and an unrestricted subsidy.

The unrestricted subsidy eliminates �rms�incentives to free ride, and the matching subsidy solves the

underinvestment due to the appropriability problem. Together, they ensure �rms to follow the �rst-best

investment path.

An ex post equilibrium does not exist when the shadow cost of public funding is positive. This

necessitates consideration of what the government�s criteria should be in selecting an optimal policy.

We consider two criteria: rationalizability and max-min. We show that for both N = 1 and N > 1, the

set of max-min policies consists entirely of pure matching subsidies. When N = 1, the policy with the

highest matching rate solves the problem of underinvestment without inducing overinvestment. This

is not the case when N > 1, since a pure matching subsidy is unable to correct for underinvestment

that arises due to the free-rider problem. However, the highest max-min matching rate for a research

consortium is less than the highest max-min matching rate under R&D competition, so allowing �rms

to determine R&D levels cooperatively can economize on the total shadow cost of the subsidy policy.

There are a number of interesting issues not addressed in this paper that warrant further attention.

First, the belief updating structure in our paper is rather simple. As more time passes without a

discovery, the updated likelihood that the project is viable falls. The simplicity of this updating rule

allows us to derive a closed-form solution to our problem. However, this rule does not allow upward

revision of the viability probability. To model this, we need to allow for the possibility that �rms acquire

new information as the research program progresses. This would be a useful extension of our model.

Second, as noted above, our paper restricts attention to time-invariant subsidy policies. In particular,

this rules out the use of funding deadlines and terminations as a way of motivating R&D investment.

Bonatti and Hörner (2011) study the use of deadlines in addressing the free-riding problem in an R&D

collaboration. They show that a �nite deadline T can be chosen to induce the agents to contribute
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maximum e¤ort throughout the process. The intuition is that because agents cannot continue the

project on their own once the deadline is reached, as the deadline approaches agents will increase their

e¤ort level to race against time. They show that there is an optimal time T 0 < T after which the agents

will exert maximum e¤ort levels. Under certain conditions, T can be chosen so that T 0 � 0, which

implies that the agents will exert full e¤ort throughout the collaboration process.

Our paper di¤ers from Bonatti and Hörner in that private incentives in our model are not only

a¤ected by the free-rider problem, but also by the appropriability problem. While Bonatti and Hörner

show that a deadline can neutralize the free-rider problem, it is less clear that a deadline would fully

neutralize the appropriability problem. Given the potential consumer bene�t from the project that

cannot be appropriated by �rms, a social planner may not want to set a deadline such that �rms

are forbidden to conduct research after the deadline expires. Further, in the context of our model,

government could not completely forbid �rms to conduct self-funded research, and so a strict deadline

on research activity would not be feasible. Still, deadlines on subsidies may be useful in our model.

Removing governmental support after certain point in time would, as in Bonatti and Hörner, generate

additional incentives. However, we conjecture that in contrast to the Bonatti and Hörner model, a

subsidy deadline by itself would not achieve the �rst-best outcome when the appropriability problem is

present. More generally, though, allowing for the possibility of a time-varying subsidy mechanism may

move the social planner closer to the �rst-best solution in those cases in which time-invariant policies

cannot attain the �rst-best solution (i.e., when there is a shadow-cost of public funds). In such cases, it

would be useful to explore the interaction of deadlines and other subsidy instruments and in particular,

whether a deadline is a complement to the matching rate, or a substitute for it, in generating incentives.
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6 Appendix

Proof of Proposition 1:

Because the objective function is linear in k; the �rm�s optimal investment decision k1(p) is a �bang-

bang�rule. This implies that it either sets k equal to the minimum required level z, or its maximum

feasible level 1, i.e.,

k1(p) =

8><>: 1 if p > p1

z if p � p1
:

If k = z; the general solution to the equation (6) is 26

VL (p) =
s� �z
r

+
�z

r + �z

r�� (s� �z)
r

p:

If k = 1; the general solution to the equation (6) is

VH (p) =
s� (1� �)�� ��z

r
+

�

r + �

�
��

�
s� (1� �)�� ��z

r

��
p+B1p

�
1� p
p

� r+�
�

;

where B1 is a constant. The abandonment threshold p1 and the constant B1 are determined by the

value matching and smooth pasting conditions for VL (p) and VH (p):

VL (p1) = VH (p1) : (27)

V 0L (p1) = V
0
H (p1) : (28)

Algebraic analysis of (27) and (28) reveal that p1 can be expressed as the solution to (7) above, and the

p1 and B1 that solve (27) and (28) are

p1(a) =
� (1� �) (r + �z)
� (r�� s+ �z) :

B1(a) =
�� (1� z) (1� �)

r (r + �)

�
1� p1
p1

�� r
�

:

26Note that there is a nonlinear term B0p
�
1�p
p

� r+�z
�z

to the general soluction of this di¤erential equation, but is dropped

because V (0) needs to be �nite and thus implies B0 = 0: In fact, V (0) represents the value of the �rm when the R&D
project is destined to fail.
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Thus,

V1 (p) =

8><>: VH(p) =
s�(1��)����z

r + �
r+�

�
��

h
s�(1��)����z

r

i�
p+B1(a)p

�
1�p
p

� r+�
�

if p > p1(a)

VL(p) =
s��z
r + �z

r+�z
r��(s��z)

r p if p � p1(a)
:

�

Proof of Proposition 2:27

We begin by de�ning

b
�
p; V i

�
= �p

�
��� V i � (1� p)V i0

�
c (p) = � (1� �)� �p (1� �)�:

The term b
�
p; V i

�
is the marginal bene�t to the �rm from an additional unit of investment e¤ort by a

rival �rm, while c(p) is the net marginal cost to the �rm from an additional unit of R&D. We can write

the Bellman equation (10) as

rV i (p)� (s� ��z) = K�ib
�
p; V i

�
+ max
ki2[z;1]

�
ki
�
b
�
p; V i

�
� c(p)

�	
;

The �rm�s optimal investment decision is given by the following �reaction function�:

ki(p) =

8>>>><>>>>:
1 if V i(p) > s���z

r + c(p)
r K

�i

2 [z; 1] if V i(p) = s���z
r + c(p)

r K
�i

z if V i(p) < s���z
r + c(p)

r K
�i

: (29)

The linearity of the value function implies that we only need to consider three cases: k = z; k = 1

and k = � 2 (z; 1). As noted, we seek to characterize a symmetric equilibrium with investment policies

ki(p) = kN (p) and value function V i (p) = VN (p); for all i = 1; :::; N . When kN (p) = z; the di¤erential

27Part (i) of the proof follows the method employed by Keller Rady and Cripps (2005).
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equation (10) is:

rVN (p) = s� ��z + �p(N � 1)z
�
��� VN (p)� (1� p)V 0N (p)

�
+ z

�
�p
�
�� VN (p)� (1� p)V 0N (p)

�
� � (1� �)

�
:

The solution to this equation, denoted by V LN (p), is:
28

V LN (p) =
s� �z
r

+
�Nz

h
r(1��)�

N + r��� s+ �z
i

r (r + �Nz)
p:

When kN (p) = 1; the di¤erential equation (10) is

rVN (p) = s� ��z + �p(N � 1)
�
��� VN (p)� (1� p)V 0N (p)

�
+ [�p [�� VN (p)� (1� p)VN (p)]� � (1� �)] :

The solution to this equation, denoted by V HN (p), is

V HN (p) =
s� � (1� �)� ��z

r
+
�N

�
r(1��)�

N + r��� s+ � (1� �) + ��z
�

r (r + �N)
p+BHp

�
1� p
p

� r+�N
�N

;

where BH is a constant to be determined. Finally, if kN (p) 2 (z; 1), then from (29), b(VN (p); p) = c(p),

or

�p
�
��� VN (p)� (1� p)V 0N (p)

�
� [� (1� �)� �p (1� �)�] = 0:

The solution to this equation, which is denoted by VMN (p), is

VMN (p) � ��� (1� �)�
�

�BM (1� p) +
(1� �)� (1� p)

�
ln
1� p
p
; (30)

where BM is a constant to be determined. The value matching and smooth pasting conditions imply

28The coe¢ cient to the nonlinear part is zero as we require �niteness for the value function at p = 0:
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that

VMN (pN ) = V
L
N (pN )

VM 0
N (pN ) = V

L0
N (pN ) ;

which gives us

pN (a) =
� (1� �)

�
�h
�� (s��z)

r

i �
r

r+�Nz

�
+ (1� �)�

�
(N�1)�z
r+�Nz

�� : (31)

Now, from (29), kN (p) 2 (z; 1) if and only if VMN (p) = s���z
r + c(p)

r (N � 1)kN (p). This implies:

kN (p) =
rVMN (p)� s+ ��z
(N � 1) c (p) ; (32)

which makes each �rm indi¤erent between choosing any investment level between z and 1. A necessary

condition for this to be well de�ned is that c(pN ) be positive; otherwise kN (p) will be negative. From

the de�nition of c(p) above, c(pN ) > 0 if and only if pN <
(1��)�
�(1��)� . Straightforward algebra establishes

that this condition is equivalent to

� > �(z; s) , 1�
��

�
s��z
r

�
�

r

r + �z
:

Since kN (p) ! 1 as p ! (1��)�
�(1��)� , there exists qN (a) such that kN (qN (a)) = 1. Substituting (30) into

(32) and equating to 1 yields condition (13) above. In this case, the value function is thus:

VN (p) =

8>>>><>>>>:
V HN (p) if p � qN (a)

VMN (p) if pN (a) < p < qN (a)

V LN (p) if p � pN (a)

;

with BH(a) satisfying V HH (qN ) = V
M
N (qN ), or equivalently, it equates (VN1) and (VN2).

(ii) If � � �(z; s), we will show that each �rm�s optimal strategy is either to invest ��at out� in

R&D e¤ort by setting k = 1 when p > pN (a) and invest at the minimum level z, when p � pN (a).

To establish the latter, suppose all other �rms besides i are investing the minimum level z; so that

K�i = (N � 1) z. To show that �rm i�s best response is also to invest z when p � pN (a), then from
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(29), we must establish that VN (p) <
s���z
r + c(p)

r (N � 1)K�i, or equivalently V LN (p) <
s���z
r +

c(p)
r (N � 1) z, when p � pN (a). Using the expressions for V LN (p) and c(p), and some straightfor-

ward algebraic manipulations, V LN (p) <
s���z
r + c(p)

r (N � 1) z can be shown to be equivalent to

�
�h
�� (s��z)

r

i �
r

r+�Nz

�
+ (1� �)�

�
(N�1)�z
r+�Nz

��
p � �(1 � �), and given the expression for pN (a) in

(31), this indeed is true for p � pN (a). Now assume p > pN (a) and every other �rm invests k = 1. We

need to show that �rm i�s best response is to invest k = 1: Suppose not. Then, due to the linearity of

the problem, the only case that the �rm will invest z < k < 1 is when V i = s
r +

c(p)
r K

�i; but this implies

pN (a) <
(1��)�
�(1��)� : However, � � �(z; s) implies z �

r���s
�(1��)��� , which, in turn, implies pN (a) �

(1��)�
�(1��)� ,

a contradiction. The uniqueness also follows from the fact that the investment problem is linear in k

so �rms will not coordinate in investing in a lower level � 2 (z; 1) because if that is the case, it then

implies b (p; V ni ) > c (p), in which case the �rm will invest k = 1 rather than � < 1:29 In this case the

value function is:

VN (p) =

8><>: V HN (p) if p > pN (a)

V LN (p) if p � pN (a)
:

�

Derivation of the welfare schedule W1(p):

As Proposition 1 shows, if �(1��)(r+�z)�(r��s+�z) < 1, the monopoly �rm either invests k = 1 or k = z in the

R&D project. If k1(p) = 1 (which occurs if p > p1(a)); the solution to the di¤erential equation in (17)

is:

W1 (p) = �
�
�+ s+ ��(1� z)

r

�
+

�

r + �

�
CS +�+

�
�+ s+ ��(1� z)

r

��
p+BW p

�
1� p
p

� r+�
�

:

If k1(p) = z (which occurs if p < p1); the solution to the di¤erential equation in (17) is:30

W1 (p) = �
�
�z + s

r

�
+

�z

r + �z

�
CS +�+

�
�z + s

r

��
p:

29For a similar proof of this result, see Besanko and Wu (2013).
30As usual, we drop the nonlinear term by requiring the value function to be �nite at p = 0:
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Thus,

W1 (p) =

8><>: �
�
�+s+��(1�z)

r

�
+ �

r+�

h
CS +�+

�
�+s+��(1�z)

r

�i
p+BW p

�
1�p
p

� r+�
�

if p > p1(a)

�
��z+s

r

�
+ �z

r+�z

�
CS +�+

��z+s
r

��
p if p � p1(a)

;

(33)

Because at p1, the �rm is indi¤erent between k = 1 and k = z, the welfare schedule is continuous at p1.

Thus, the constant BW equates the upper piece of W1 (p) and the lower piece. Straightforward algebra

establishes

BW = BW (p1;a) =

8>>>><>>>>:
�(1�z)
r + ��(1�z)

r +

�
r+�

h
CS +�+

�
�+s+��(1�z)

r

�i
p1

� �z
r+�z

�
CS +�+

��z+s
r

��
p1

9>>>>=>>>>;
p1

�
(1�p1)
p1

� r+�
r

If �(1��)(r+�z)�(r��s+�z) � 1, the monopoly �rm invests k = z in the R&D project for all p, and thus

W1(p) = �
�
�z + s

r

�
+

�z

r + �z

�
CS +�+

�
�z + s

r

��
p:

�

Proof of Proposition 3:

To prove the proposition, we will show that the �rst-best level of welfare can be attained by setting

s = z = 0 and choosing � = 1� �. The �rst-best R&D policy k�(p) solves the social planner�s problem:

W � (p) = max
k2[0;1]

h
��kdt+ �kpdt (CS +�) + (1� �kpdt)e�rdtW � (p+ dp)

i
: (34)

Using an approach similar for proving Proposition 1, the �rst-best R&D policy is given by:

k�(p) =

8><>: 1 if p > p�

0 if p � p�
; (35)

where

p� =
�

� (� + CS)
:31

31Because we have assumed that the social bene�t-cost ratio for a viable project exceeds 1, we have �(CS+�)
�

> 1, and
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is the �rst-best abandonment threshold.

Now, when  = 0,

W1 (p) = ��k1(p)dt+ �k1(p)pdt (CS +�) + (1� �k1(p)pdt)e�rdtW1 (p+ dp) ;

and because of (34), for any arbitrary subsidy policy, it must be the case that W1(p) � W � (p), and in

particular W1(p0ja) � W � (p0). However, if we can �nd a subsidy policy such that k1(p) = k�(p);then

W1 (p) = W
�(p) and in particular, W1(p0ja) = W �(p0) for any prior belief p0 the �rm might have. A

subsidy policy that implements the �rst-best investment policy must therefore maximize expected ex

ante welfare when  = 0.

Note that if s = z = 0,

p1(a) = p1(0; 0; �) =
�(1� �)
� (� + CS)

:

A matching rate given by � = 1� �
�+CS = 1� �, along with s = z = 0, ensures that p1(a) = p

�, and

thus implements the maximum level of expected welfare for any prior belief p0. Therefore, z = 0; s = 0;

� = 1� �
�+CS is the optimal policy.�

Proof of Proposition 4:

Suppose the contrary, i.e., there exists a policy a 2 A such that a does not depend on p0, but

maximizes W1(p0ja) for all p0 2 [0; 1]. Now, when p0 = 1; by (19) we know

W1(1ja) =

8><>: �
�
�+s+��(1�z)

r

�
+ �
r+�

h
CS +�+

�
�+s+��(1�z)

r

�i
9>=>; ;

and in this case the policy (0; 0; 0) can easily be shown to be uniquely optimal (provided pNO1 < 1).

Thus, it is necessary that a = (0; 0; 0). However, for p0 2
 

�

�
�
�+ CS

1+

� ; pNO1
!
, the policy a cannot induce

investment and thus is not optimal. To see this, notice that

p0� (� + CS)� �� �
CS
1+

�+ CS
1+

> 0 if p0 >
�

�
�
�+ CS

1+

� ;
thus p� < 1. This implies that there must exist some set of prior beliefs for which �at-out R&D investment would occur
under the socially optimal policy.
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that is, the expected �ow payo¤ from investment for the government under policy
�
0; 0;

CS
1+

�+ CS
1+

�
is

strictly positive; and

p0���
 
1�

CS
1+

�+ CS
1+

!
� > 0 if p0 >

�

�
�
�+ CS

1+

� ;

that is, the expected �ow payo¤ from investment for the �rm under policy
�
0; 0;

CS
1+

�+ CS
1+

�
is strictly

positive. Therefore the policy
�
0; 0;

CS
1+

�+ CS
1+

�
, which can induce investment, is superior to a. This

contradiction with the supposition that a is an ex post equilibrium can only imply that no ex post

equilibrium exists.�

Proof of Proposition 5:

The �only if�part is obvious because if there exist �00 that dominates �; then we must have

Z 1

0

Z
a2A

W1 (pja) d� (a) d� (p) <
Z 1

0

Z
a2A

W1 (pja) d�00 (a) d�(p) � max
�02�(�A)

Z 1

0

Z
a2A

W1 (pja) d�0 (a) d� (p) ;

which means � is never a best response, i.e., not rationalizable.

For the �if� part, suppose � is not rationalizable, that is, for any � 2 �(�) there exists b (�) 2

argmax�02�(�A)
R 1
0

R
a2AW1 (pja) d�0 (a) d� (p) ; such that

Z 1

0

Z
a2A

W1 (pja) d� (a) d� (p) <
Z 1

0

Z
a2A

W1 (pja) db (�) d� (a) d� (p) :

De�ne a two player zero-sum game such that
�
�1; �2

�
2 �(�A)��(�) are a strategy pro�le and player

1�s payo¤ is

U1
�
�1; �2

�
=

Z 1

0

Z
a2A

W1 (pja) d�1 (a) d�2 (p)�
Z 1

0

Z
a2A

W1 (pja) d� (a) d�2 (p) ;

and player 2�s payo¤ is U2
�
�1; �2

�
= �U1

�
�1; �2

�
. By (the extension of) the von Neumann Minimax
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Theorem32, there exists
�
�1�; �2�

�
such that

�1� 2 arg max
�12�(�A)

min
�22�(�)

U1
�
�1; �2

�
;

�2� 2 arg min
�22�(�)

max
�12�(�A)

U1
�
�1; �2

�
;

and

max
�12�(�A)

min
�22�(�)

U1
�
�1; �2

�
= U1

�
�1�; �2�

�
= min
�22�(�)

max
�12�(�A)

U1
�
�1; �2

�
:

Furthermore,
�
�1�; �2�

�
is a (mixed strategy) Nash equilibrium. It follows

U1
�
�1�; �2

�
� U1

�
�1�; �2�

�
� U1

�
b
�
�2�
�
; �2�

�
> U1

�
�; �2�

�
= 0:

The equality follows from the de�nition of U1
�
�1; �2

�
. But

U1
�
�1�; �2

�
> 0 8�2 2 �(�))Z 1

0

Z
a2A

W1 (pja) d�1� (a) d�2 (p) >
Z 1

0

Z
a2A

W1 (pja) d� (a) d�2 (p) 8�2 2 �(�) :

Thus, � is strictly dominated by �1�.�

Proof of Proposition 6:

Suppose the opposite, that is, 9� 2 �(�A) such that � is a max-min solution but not rationalizable.

Then by Proposition 5, � must be strictly dominated, i.e., 9�0 2 �(�A) such that

Z 1

0

Z
a2A

W1 (pja) d�0 (a) d� (p) >
Z 1

0

Z
a2A

W1 (pja) d� (a) d� (p) for all � 2 �(�) :

32The (original) von Neumann Minimax Theorem applies to �nite two-person zero-sum games. Since the pure strategy
spaces A and [0; 1] are both convex and compact subsets of Euclidian spaces, what we need is an extension to in�nite games
where the pure strategy spaces are convex compact sets in topological linear spaces, and the payo¤ function is continuous.
The proof of such an extension has been given by Nikaidô (1954).
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Consequently, for all � 2 �(�),

min�02�(�)
R 1
0

R
a2AW1 (pja) d� (a) d�0 (p)

�
R 1
0

R
a2AW1 (pja) d� (a) d� (p)

<
R 1
0

R
a2AW1 (pja) d�0 (a) d� (p) :

The universality of � implies

min�02�(�)
R 1
0

R
a2AW1 (pja) d� (a) d�0 (p) �

R 1
0

R
a2AW1 (pja) d� (a) d�00 (p) for any �00 2 �(�) :

In particular, let �00 2 argmin�2�(�)
R 1
0

R
a2AW1 (pja) d�0 (a) d� (p) ; we have

min
�02�(�)

Z 1

0

Z
a2A

W1 (pja) d� (a) d�0 (p)

�
Z 1

0

Z
a2A

W1 (pja) d� (a) d�00 (p)

<

Z 1

0

Z
a2A

W1 (pja) d�0 (a) d�00 (p)

= min
�2�(�)

Z 1

0

Z
a2A

W1 (pja) d�0 (a) d� (p) :

The above strict inequality is a contradiction to the supposition that � is a max-min solution since �0

has a higher minimum value.�

Proof of Proposition 7:

For p0 = 0, it is obvious that W1 (p0ja) � 0 for all a 2 A and W1 (p0j (0; 0; 0)) = 0. Consequently,

max
�02�(�A)

min
�2�(�)

Z 1

0

Z
a2A

W1 (pja) d�0 (a) d� (p) = 0:

Since for any a = (z; s; �) 2 A such that s > 0,

W1 (0ja) < 0 = max
�02�(�A)

min
�2�(�)

Z 1

0

Z
a2A

W1 (pja) d�0 (a) d� (p) ;

a cannot be a max-min solution. That is, s = 0 is a necessary conditions for a max-min solution, and

since we require s � �z and z � 0, z = 0 must also be a necessary condition as well.

Now, for any a = (0; 0; �) 2 A such that � > ��� , it can be veri�ed that W1 (p0j (0; 0; �)) < 0 for
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p0 2
�
p1 ((0; 0; �)) ; p

��


�
. To verify this, it su¢ ces to establish that for � = ��� from social point of view,

p�� is the optimal stopping point, which has continuation value of zero (for the government), and we

have so argued in the main text above. It follows that for � > ��� , which induces overinvestment and

a higher total shadow cost of public funds, W1(p0j(0; 0; �) has negative value. Thus

W1 (p0j (0; 0; �)) < 0 = max
�02�(�A)

min
�2�(�)

Z 1

0

Z
a2A

W1 (pja) d�0 (a) d� (p) ;

that is, (0; 0; �) cannot be a (pure strategy) max-min solution.

For all � 2
�
0; ���

�
,

min
�2�(�)

Z 1

0
W1 (pj (0; 0; �)) d� (p) = 0;

that is, (0; 0; �) is a pure strategy max-min solution for all � 2
�
0; ���

�
.

For any mixed strategy � which has positive probability mass over f(0; 0; �0) j�0 2 [�; 1]g for some

� > ��� , we have

min�2�(�)
R 1
0

R
a2f(0;0;�0)j�02[0;1]gW1 (pja) d� (a) d� (p)

�
R 1
0

R
a2f(0;0;�0)j�02[0;1]gW1 (pja) d� (a) d�p0 (p) , where �p0 (p) =

8><>: 1 for p = p0

0 for p 6= p0
; p0 2

�
p1 ((0; 0; �)) ; p

��


�
=
R 1
0

R
a2f(0;0;�0)j�02[�;1]gW1 (p0ja) d� (a)

< 0 = max�02�(�A)min�2�(�)
R 1
0

R
a2AW1 (pja) d�0 (a) d� (p) ;

that is, � cannot be a mixed strategy max-min solution.

Also, for any mixed strategy � over support Amaxmin ,
�
(0; 0; �) j� 2

�
0; ���

�	
, we have

min�2�(�)
R 1
0

R
a2f(0;0;�0)j�02[0;��� ]gW1 (pja) d� (a) d� (p)

�
R 1
0

R
a2f(0;0;�0)j�02[0;��� ]gW1 (pja) d� (a) d�0 (p)

=
R 1
0

R
a2f(0;0;�0)j�02[0;��� ]gW1 (0ja) d� (a) ;

= 0:

where the next to last equality follows from the property of the Dirac measure �0 (p). Now, since
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W1 (pja) � 0 for all p 2 [0; 1], all a 2
�
(0; 0; �0) j�0 2

�
0; ���

�	
; we also have

min�2�(�)
R 1
0

R
a2f(0;0;�0)j�02[0;��� ]gW1 (pja) d� (a) d� (p)

� min�2�(�)
R 1
0

R
a2f(0;0;�0)j�02[0;��� ]g 0d� (a) d� (p)

= 0:

Overall, we must have

min
�2�(�)

Z 1

0

Z
a2f(0;0;�0)j�02[0;��� ]g

W1 (pja) d� (a) d� (p) = 0;

that is, � is a max-min solution for all mixed strategy � over support Amaxmin.�

Characterization of the welfare schedule WN (p) and the conditional expected social welfare

function WN (p0ja):

To derive the conditional expected social welfare function WN (p0ja), we begin with the recursion

for the welfare schedule WN (p) when the �rm is faced with policy a:

WN (p) = ��NkN (p)dt� N [s+ ��(kN (p)� z)] dt

+ �NkN (p)pdt [CS +�+ (N � 1) ��] + (1� �NkN (p)pdt)e�rdtWN (p+ dp) :

The welfare schedule can be transformed into the following di¤erential equation:

0 = ��NkN (p)� N [s+ ��(kN (p)� z)] + �NkN (p) p [CS + (1 + (N � 1) �)�]

� (r + �NkN (p) p)WN (p)� �NkN (p) p (1� p)W 0
N (p) : (36)

When kN (p) = 1 (i.e., p > qN (a)); the solution to this di¤erential equation is

WN (p) = �
�N

r
� N [s+ �� (1� z)]

r

+

�
�N (r [CS + (1 + (N � 1) �)�] +N�+N [s+ �� (1� z)])

r (r + �N)

�
p+BHW p

�
1� p
p

� r+�N
�N

;
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where BHW is a constant. When k (p) = z (i.e., p < pN (a)); the solution to this di¤erential equation is

WN (p) = �
N�z

r
� Ns

r
+
�Nz (r [CS + (1 + (N � 1) �)�] + �Nz +Ns)

r (r + �Nz)
p:

When kN (p) 2 (z; 1) ; the di¤erential equation (36) does not have a closed form solution.

The conditional expected social welfare functionWN (p0ja) is found by evaluatingWN (p) at p = p0.�

Proof of Proposition 8:

We employ the same logic used to prove Proposition 3: when  = 0 it su¢ ces to show that if we can

induce kN (p) = k�(p) through an appropriate choice of (z; s; �), then that subsidy policy must indeed

maximize WN (p0ja). Now, recall that under the equilibrium policy there is no free riding if and only if

� � �(z; s) = 1�
��

�
s��z
r

�
�

r

r + �z
; :

When z = 0, s = r��, then it can be veri�ed that �(z; s) = �, which is just enough to eliminate the

free-rider problem. The equilibrium investment policy in this case is

kN (p) =

8><>: 1 if p > pN (0; r��; �)

0 if p � pN (0; r��; �);
;

where

pN (0; r��; �) =
� (1� �)
�(1� �)� :

By setting � = CS+N��
CS+�+(N�1)�� , we can make pN (0; r��; �) = p�N (a). Thus, the �rst-best investment

policy can be induced by setting z = 0 and using a combination of unrestricted funding s = r�� and a

matching rate � = CS+N��
CS+�+(N�1)�� .�

Proof of Proposition 9:

Suppose an ex post equilibrium exists. Then, in particular, that equilibrium would solve the opti-

mization in (25) for the particular case of p0 = 1. But when p0 = 1, the solution to this optimization is

a = (0; 0; 0). To see why formally, we note that from the derivation of WN (p0ja) above when p0 = 1,

we have
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WN (1ja) = �
�N

r
+

�N

(r + �N)

�
r [CS + (1 + (N � 1) �)�] +N�

r

�
� N [s+ �� (1� z)]

(r + �N)
:

This implies that the ex post equilibrium policy must be a = (0; 0; 0). This policy must, then, also solve

the optimization in (25) if the government knew that p0 2
�
p��N ; pN (0; 0; 0)

�
. But in such a case the ex

post equilibrium policy (0; 0; 0) will not induce investment and would be inferior to policy
�
0; 0; ���N

�
,

which contradicts a = (0; 0; 0) being an ex post equilibrium. Since the supposition that an ex post

equilibrium exists is the root cause of the contradiction, it must be false.�
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